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Abstract

A dual component system with vibro-impact is considered. Local codimension two bifurcation of maps, involving a real

eigenvalue and a complex conjugate pair escaping the unit circle simultaneously, is analyzed by using the center manifold

and normal form method for maps. The period n single-impact motion and Poincaré map of the vibro-impact system are

derived analytically. Stability and local bifurcation of single-impact periodic motion are analyzed by using the Poincaré

map. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the

normal form map associated with the codimension two bifurcation is obtained. Local behavior of the dual component

system with vibro-impact, near the point of codimension two bifurcation, is analyzed. It is found that near the point of

codimension two bifurcation, there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf

bifurcation of period two double-impact motion. Period doubling bifurcation of period one single-impact motion

commonly exists near the point of codimension two bifurcation. However, no period doubling cascade emerges due to

change of the type of period two fixed points and occurrence of Hopf bifurcation associated with period two fixed points.

The period two fixed points are symmetrical about the corresponding period one point. The results from simulation show

that the attracting invariant circles associated with period two points are symmetrical about the corresponding period one

point near the value of Hopf bifurcation of period two points. Two actual examples, the impact-forming machinery and

inertial shaker, are chosen to analyze further the phenomena of codimension two bifurcation of maps, and local

bifurcation analysis and numerical simulation are carried out to unfold dynamical behavior of these vibro-impact systems

near the points of codimension two bifurcations.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrating systems with clearances, gaps or stops are frequently encountered in technical applications of
mechanism, vehicle traffic, nuclear reactor, etc. Repeated impacts, i.e., vibro-impacts, usually occur whenever
the components of a vibrating system collide with rigid obstacles or with each other. The principle of
operation of vibration hammers, impact dampers, machinery for compacting, milling and forming, offshore
structures, shakers and pile drivers, etc., is based on the impact action for moving bodies. With other
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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equipment, e.g., mechanisms with clearances, heat exchangers, fuel elements of nuclear reactors, gears, piping
systems, wheel–rail interaction of high speed railway coaches, etc., impacts also occur, but they are undesirable
as they bring about failures, strain, shorter service life and increased noise levels. Researches into vibro-impact
problems have significance on optimization design of machinery with clearances, gaps or stops, noise
suppression, reliability analyses, etc. The physical process during impacts is strongly nonlinear and
discontinuous, but it can be described theoretically and numerically by discontinuities in good agreement with
reality. Compared with single impact, the dynamics of vibro-impacts is more complicated, and hence, has
received great attention. Many new theoretical problems have been advanced in researches into vibro-impacts
dynamics, and the study of problems of impacting vibration becomes a new subject on nonlinear dynamics.
Some important problems on vibro-impact dynamics, including global bifurcations [1–8], singularities [9–18],
chattering impact [19], quasi-periodic impacts [20–24] controlling chaos [25], etc., have been studied in the past
several years. Along with the theoretical researches into vibro-impact dynamics, the research into application
of these systems are developed, for example, wheel-rail impact of railway coaches [26], impact noise analysis
[27], shakers [28,29], vibrating hammer [30], offshore structure [31], impact dampers [32–36], gears [37,38], etc.

The purpose of the present study is to focus attention on codimension two bifurcation of period one single-
impact motion of vibro-impact systems. There are many types of codimension two bifurcations of ordinary
differential equations and maps, some of which are studied in Refs. [39–45]. Here a local codimension two
bifurcation of maps, involving a real eigenvalue and a complex conjugate pair escaping the unit circle
simultaneously, is analyzed by using the center manifold normal form method for maps. A dual component
system with vibro-impact is considered. The period n single-impact motion and Poincaré map of the vibro-
impact system are derived analytically. Stability and local bifurcation of single-impact periodic motion are
analyzed by using the Poincaré map. A center manifold theorem technique is applied to reduce the Poincaré
map to a three-dimensional one, and the normal form map associated with the codimension two bifurcation is
obtained. Local behavior of the dual component system with vibro-impact, near the point of codimension two
bifurcation, is analyzed. It is found that near the point of codimension two bifurcation there exists not only
Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact
motion. Period doubling bifurcation of period one single-impact motion is commonly existent near the point
of codimension two bifurcation. However, no period doubling cascade emerges due to change of the type of
period two fixed points and occurrence of Hopf bifurcation associated with period two fixed points. The
period two fixed points are symmetrical about the corresponding period one point. The results from
simulation show that the attracting invariant circles associated with period two points are symmetrical about
the corresponding period one point near the value of Hopf bifurcation of period two points. Finally, two
actual examples, the impact-forming machinery and inertial shaker, are chosen to analyze further the
phenomena of codimension two bifurcation of impact maps, and local bifurcation analysis and numerical
simulation are carried out to unfold dynamical behavior of these vibro-impact systems near the points of
codimension two bifurcations.

2. The mechanical models of vibro-impact systems

The mechanical models for a dual component system with vibro-impact, the impact-forming machinery and
inertial shaker are shown, respectively, in Figs. 1(a), (b) and (c). We first analyze the dual component system
shown in Fig. 1(a). Displacements of the masses M1 and M2 are represented by X1 and X2, respectively. The
masses are connected to the supporting base by the linear springs with stiffnesses K1 and K2, and linear viscous
dashpots with damping constants C1 and C2. The excitations on masses are harmonic with amplitudes P1 and
P2. O is the excitation frequency, and t is the phase angle. The mass M1 impacts mutually with the mass M2

when the difference of their displacements equals the gap D, i.e. X1(t)�X2(t) ¼ D. The impact is described by
the conservation law of momentum and a coefficient of restitution R, and it is assumed that the duration of
impact is negligible compared to the period of the force.

The motion process of the system, between any two consecutive impacts, is considered. Between any two
consecutive impacts, the time T is always set to zero directly at the instant when the former impact is over, and
the phase angle t is used only to make a suitable choice for the origin of time in the calculation. The state of
the vibro-impact system, immediately after impact, has become initial conditions in the subsequent process of
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Fig. 1. Schematics of the vibro-impacts systems. (a) A dual component system with vibro-impact, (b) the impact-forming machinery, and

(c) the inertial shaker.
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the motion. Between consecutive impacts, the non-dimensional differential equations of motion are given by

€x1 þ 2z1 _x1 þ x1 ¼ sinðotþ tÞ; €x2 þ 2z2o0 _x2 þ o2
0x2 ¼ f 0 sinðotþ tÞ, (1)

where a dot ( � ) denotes differentiation with respect to the non-dimensional time t, and the non-dimensional
quantities are given by

mm ¼
M1

M2

; zi ¼
Ci

2
ffiffiffiffiffiffiffiffiffiffiffiffi
KiMi

p ; xi ¼
X iK1

P1

; i ¼ 1; 2

f 0 ¼
mmP2

P1

; o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
K2mm

K1

r
; o ¼ O

ffiffiffiffiffiffiffi
M1

K1

r
; t ¼ T

ffiffiffiffiffiffiffi
K1

M1

r
; d ¼

D � K1

P1

. ð2Þ

When the impact occurs, for x1(t)�x2(t) ¼ d, the velocities of the masses M1 and M2 are changed according
to the conservation law of momentum, and the impact equation of the masses and the coefficient of restitution
R are given by

mm _x1þ þ _x2þ ¼ mm _x1� þ _x2�; R ¼ _x2þ � _x1þð Þ= _x1� � _x2�ð Þ, (3)

where _xi� and _xiþ (i ¼ 1, 2) represent the velocities of immediately before and after the impact of the masses
Mi, respectively.

The general solutions of Eq. (1) are given by

xjðtÞ ¼ e�Zj tðaj cosodjtþ bj sinodjtÞ þ Aj sinðotþ tÞ þ Bj cosðotþ tÞ ðj ¼ 1; 2Þ, (4)

where Z1 ¼ z1, Z2 ¼ z2o0, od1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z21

q
, od2 ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q
, aj and bj are the constants of integration which

are determined by the initial condition and modal parameters of the system, and Aj and Bj are the amplitude
constants.

3. Single-impact periodic motion

Impacting systems are conveniently studied using a mapping derived from the equations of motion. Each
iterate of this map corresponds to the mass M1 striking the mass M2 once. In this section, only the periodic
motion of the model, with one impact during n cycles of the force, is considered, which is called the period n
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single-impact motion. Letting y ¼ ot, there are generally two ways to choose the Poincaré sections:
s̄ ;s � R

4
� S, where s̄ ¼ ðx1; _x1;x2; _x2; yÞ 2 R

4
� S; y ¼ 0; modð2pÞ

� �
, s ¼ ðx1; _x1;x2; _x2; yÞ 2

�
R

4
� S;

x1 � x2 ¼ d; _x1 ¼ _x1þ; _x2 ¼ _x2þg. Because there exists singularity of the Poincaré map caused by the motions
with grazing contact of two masses in the vibro-impact systems, it is difficult to observe the motions with
grazing contact of two masses in the Poincaré section s̄. In this paper, we choose the section s to establish the
Poincaré map of the system. The disturbed map of period n single-impact motion is expressed as

X 0 ¼ f ðv;X Þ, (5)

where XAR4, v is varying parameters, vAR1 or R2; X ¼ X � þ DX , X 0 ¼ X � þ DX 0, X � ¼ ð _x1þ;x20; _x2þ; t0Þ
T is a

fixed point in the hyperplane s, DX ¼ ðD _x1þ;Dx20;D _x2þ;DtÞ
T and DX 0 ¼ ðD _x01þ;Dx020;D _x

0

2þ;Dt
0Þ
T are the

disturbed vectors of X �.
Under suitable system parameter conditions, the system shown in Fig. 1(a) exhibits periodic behavior. In the

paper, we can characterize periodic impact motions of the vibro-impact system by the symbol q ¼ p/n, where p

is the number of impacts and n is the number of the forcing cycle. The symbol q, originated by F. Peterka, is of
significance in analyzing the periodic-impact motions and bifurcation characteristics, and the quantity q has
rational and irrational value for periodic and chaotic motion, respectively; see Ref. [15]. The q ¼ 1/n motion
means that if the dimensionless time t is set to zero directly after an impact, then it becomes 2np/o
(n ¼ 1, 2,y) just before the next impact. After the origin of y-coordinate is displaced to an impact point, the
determination of the periodic motion is based on the fact that they satisfy the following set of periodicity and
matching conditions:

x1ð0Þ ¼ x1ð2np=oÞ ¼ x10; x2ð0Þ ¼ x2ð2np=oÞ ¼ x20,

x1ð0Þ � x2ð0Þ ¼ d; x1ð2np=oÞ � x2ð2np=oÞ ¼ d,

_x1ð0Þ ¼
1

1þ mm

mm � R
� �

_x1ð2np=oÞ þ 1þ Rð Þ _x2ð2np=oÞ
� �

¼ _x1þ,

_x2ð0Þ ¼
1

1þ mm

mm 1þ Rð Þ _x1ð2np=oÞ þ 1� Rmm

� �
_x2ð2np=oÞ

� �
¼ _x2þ, (6)

where _x1ð2np=oÞ ¼ _x1� and _x2ð2np=oÞ ¼ _x2�, respectively, are the velocities of masses M1 and M2 immediately
before the impact.

Inserting the set of periodicity and matching conditions (6) into the general solutions of Eq. (1), we can solve
for the constants of integration aj, bj and the phase angle t0 from the formula (4). For convenience, in the
following, we give expressions for some symbols h, lj and l̄ j, firstly:

lj ¼
Rodjejðcj � ejÞ � ðRþ 1ÞejZjsj

1� ejcj

þ odj; l̄ j ¼
odjejðej � cjÞ

1� ejcj

þ odj; ðj ¼ 1; 2Þ,

h ¼ �
l̄2oð1þ RÞ

mml̄1l2 þ l1 l̄2

� 	
e1s1

1� e1c1

þ
e2s2

1� e2c2

l̄1mm

l̄2

� 	
, ð7Þ

where sj ¼ sin(2npodj/o), cj ¼ cos(2npodj/o), ej ¼ e�Zj2np=o, j ¼ 1, 2.
The phase angle and constants of integration of q ¼ 1/n motion are given by

t0 ¼ cos�1
d̄g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � d̄

2
þ 1

q
g2 þ 1

0
@

1
A, (8)

b1 ¼
l̄2oðRþ 1Þðd2 sin t0 � d1 cos t0Þ

mml̄1l2 þ l1 l̄2
; b2 ¼

mml̄1oðRþ 1Þðd1 cos t0 � d2 sin t0Þ
l1 l̄2 þ l̄1l2mm

, (9)

aj ¼
ejbjsj

1� ejcj

; ðj ¼ 1; 2Þ. (10)
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In the formula (8)

g ¼
hd1 þ d2

hd2 � d1

; d1 ¼ A1 � A2; d2 ¼ B1 � B2; d̄ ¼
d

hd2 � d1

,

the sign 7 means that it is possible for two different single-impact periodic solutions to exist under the same
system parameters for the vibro-impact system. It should be noted that the existence of period n single-impact
orbit requires the condition as given below:

g2 � d̄
2
þ 1X0;

d̄g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � d̄

2
þ 1

q
g2 þ 1














p1, (11)

otherwise, it is impossible for single-impact periodic motions to exist. Substituting the constants of integration
(8)–(10) into the general solutions of Eq. (1), we obtain the periodic solutions, which correspond to one impact
during n cycles of the forcing. Inserting the time t ¼ 0 into the periodic solution, we can obtain the fixed point
X � ¼ ð _x1þ; x20; _x2þ; t0Þ

T, which is the projection of period n single-impact orbit to Poincaré section s.
4. Stability and local bifurcation of single-impact periodic motion

If the q ¼ 1/n periodic motion is disturbed at the instant of impact by the differences D _x1þ, Dx20, D _x2þ and
Dt , then one can express the differences D _x01þ; Dx020; D _x

0

2þ and Dt0 at the next impact. Here ~X ¼ ð ~x1; ~x2Þ
T and

_~X ¼ ð _~x1; _~x2Þ
T represent displacements and velocities of the disturbed motion, respectively. The solutions of

disturbed motion between two consecutive impacts are given by

~xjðtÞ ¼ e�Zj tð ~aj cosodjtþ ~bj sinodjtÞ þ Aj sinðotþ t0 þ DtÞ þ Bj cosðotþ t0 þ DtÞ; j ¼ 1; 2. (12)

For the disturbed motion, the dimensionless time is set to zero directly after an impact, it becomes
(2np+Dy)/o just before the next impact, and Dy ¼ Dt0 � Dt. Letting te ¼ (2np+Dy)/o, the boundary
conditions at two successive impact points are given by

~xið0Þ ¼ xi0 þ Dxi0; ~xiðteÞ ¼ xi0 þ Dx0i0; _~xið0Þ ¼ _xiþ þ D _xiþ; _~xiðte�Þ ¼ _xi� þ D _x0i�,

_~xiðteþÞ ¼ _xiþ þ D _x0iþ; i ¼ 1; 2; ~x1ð0Þ � ~x2ð0Þ ¼ ~x1ðteÞ � ~x2ðteÞ ¼ d;

_~x1ðteþÞ ¼
1

1þ mm

mm � R
� �

_~x1ðte�Þ þ 1þ Rð Þ _~x2ðte�Þ
� �

¼ _x1þ þ D _x01þ,

_~x2ðteþÞ ¼
1

1þ mm

mm 1þ Rð Þ _~x1ðte�Þ þ 1� Rmm

� �
_~x2ðte�Þ

� �
¼ _x2þ þ D _x02þ, (13)

where te� and teþ represent, respectively, the time shortly before and after the instant of impact.
Inserting the boundary condition (13) into the disturbed solution (12) for t ¼ 0, we can solve

~a1 ¼ dþ x20 þ Dx20 � A1 sinðt0 þ DtÞ � B1 cosðt0 þ DtÞ, (14)

~a2 ¼ x20 þ Dx20 � A2 sinðt0 þ DtÞ � B2 cosðt0 þ DtÞ, (15)

~b1 ¼
1

od1

_x1þ þ D _x1þ þ Z1dþ Z1ðx20 þ Dx20Þ � ðA1oþ B1Z1Þ cosðt0 þ DtÞ
�

þ ðB1o� A1Z1Þ sinðt0 þ DtÞ
�
, (16)

~b2 ¼
1

od2

½ _x2þ þ D _x2þ þ Z2ðx20 þ Dx20Þ � ðA2oþ B2Z2Þ cosðt0 þ DtÞ þ ðB2o� A2Z2Þ sinðt0 þ DtÞ�. (17)
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Inserting the boundary condition (13) into the disturbed solution (12) for t ¼ te, we can obtain

~x1ðteÞ � ~x2ðteÞ ¼ d; _x1þ þ D _x01þ ¼
mm � R

mm þ 1
_~x1ðteÞ þ

Rþ 1

mm þ 1
_~x2ðteÞ; x20 þ Dx020 ¼ ~x2ðteÞ,

_x2þ þ D _x02þ ¼
mmRþ mm

mm þ 1
_~x1ðteÞ þ

1� mmR

mm þ 1
_~x2ðteÞ,

t0 ¼ t0 þ Dt0 ¼ t0 þ Dtþ DyðD _x1þ;Dx20;D _x2þ;DtÞ. (18)

Defining a function gðD _x1þ;Dx20;D _x2þ;Dt;DyÞ as

gðD _x1þ;Dx20;D _x2þ;Dt;DyÞ ¼ ~x1ðteÞ � ~x2ðteÞ � d. (19)

The condition, under which there exists q ¼ 1/n fixed point, leads to the formula

gðD _x1þ;Dx20;D _x2þ;Dt;DyÞ



ð0;0;0;0;0Þ

¼ 0. (20)

Supposing qg=qDy
� �

ð0;0;0;0;0Þ
a0, using the implicit function theorem and solving Eq. (20) for Dy, one obtains

Dy ¼ DyðD _x1þ;Dx20;D _x2þ;DtÞ; Dyð0; 0; 0; 0Þ ¼ 0. (21)

Inserting formula (21) into Eq. (18), we finally get the Poincaré map of periodic impact, which is given by

X 0 ¼ f ðv;X Þ, (22)

where DX ¼ ðD _x1þ;Dx20;D _x2þ;DtÞ
T, DX 0 ¼ ðD _x01þ;Dx020;D _x

0

2þ;Dt
0Þ
T, X ¼ X � þ DX , X 0 ¼ X � þ DX 0, X � ¼

ð _x1þ;x20; _x2þ; t0Þ
T.

Linearizing the Poincaré map at the fixed point results in the matrix (Jacobian matrix), we have

Df ðv;X �Þ ¼
qf ðv;X Þ

qX






v;X�ð Þ

. (23)

If the map f (v, X) has a fixed point, then the vibro-impact system shown in Fig. 1(a) has a q ¼ 1/n impact
orbit. If none of the eigenvalues of Jacobian matrix Df v0; X �ð Þ lies on the unit circle or outside it, then it can
be shown that f(v, X) has essentially the same behavior as f(v0, X) for 9v�v09 small. Suppose that for v ¼ v0, the
system has a stable periodic solution X �ðtÞ with period 2np/o. Hence in this case, for 9v�v09 small, the
solutions of the vibro-impact system near X �ðtÞ have a stable periodic behavior as v ¼ v0. The stability and
local bifurcation of q ¼ 1/n impact motion are determined by computing eigenvalues of Df v; X �ð Þ. If the
eigenvalues of Df v; X �ð Þ with the largest modules lie on the unit circle when v ¼ vc (vc is a bifurcation value)
then there is the possibility of bifurcations taking place. In general, bifurcations occur in various ways
according to the numbers of the eigenvalues on the unit circle and their position on the unit circle, resulting in
qualitative changes of the system dynamics. If Jacobian matrix Df v; X �ð Þ has a pair of complex conjugate
eigenvalues, crossing the unit circle as v passes vc; the remainder of the spectrum of Df v; X �ð Þ will be assumed
to stay strictly inside the unit circle, then it is very likely that Hopf bifurcation associated with q ¼ 1/n motion
takes place. If the Jacobian matrix Df v; X �ð Þ has a real eigenvalue, crossing the unit circle from the point (�1,
0) or the point (+1, 0) as v passes vc, the remainder of the spectrum of Df v; X �ð Þ are strictly inside the unit
circle, period-doubling or saddle-node bifurcation of q ¼ 1/n motion can occur, respectively. Moreover, we
shall also consider the case of vAR2, and the dynamics of the system is studied with special attention to
codimension two bifurcation of q ¼ 1/1 motion.

There exist six cases of codimension two bifurcations of maps, i.e., the double eigenvalues
l1(vc) ¼ l2(vc) ¼ �1, l1(vc) ¼ l2(vc) ¼ 1; l1(vc) ¼ �1, l2(vc) ¼ 1; a real eigenvalue l1(v) and a complex
conjugate pair of eigenvalues l2,3(v) escaping the unit circle simultaneously, l1(vc) ¼ �1 or 1, 9l2,3(vc)9 ¼ 1;
two complex conjugate pairs of eigenvalues escaping the unit circle simultaneously, 9l1,2(vc)9 ¼ 1,
9l3,4(vc)9 ¼ 1. Here we consider only a case in which a complex conjugate pair of eigenvalues and a real
eigenvalue escape the unit circle simultaneously.
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5. The center manifold and normal form map

We continue to consider the Poincaré map X 0 ¼ f ðv; X Þ. X � is a fixed point for the map for v in some
neighborhood of a critical value v ¼ vc at which Df v; X �ð Þ satisfies the following assumptions:

H1. Jacobian matrix Df v; X �ð Þ has eigenvalues l1(vc), l2(vc) and l3(vc) on the unit circle, in which l1(vc) is a
real eigenvalue and l2,3(vc) are a pair of complex conjugate eigenvalues, and l1(vc) ¼ �1, l2ðvcÞ ¼ l̄3ðvcÞ,
9l2,3(vc)9 ¼ 1.

H2. The remainder of the spectrum of Df v; X �ð Þ are strictly inside the unit circle.

For all v in some neighborhood of vc, the map (22), under the change of variables m1 ¼ v1�v1c, m2 ¼ v2�v2c,
m ¼ (m1, m2)

T and X ¼ X � þ P ~Y , becomes

~Y 0 ¼ ~F ðm; ~Y Þ, (24)

where P is the eigenmatrix [23], ~Y ¼ ðy1; y2; y3; y4Þ
T, ~F ¼ ðF 1;F 2;F 3;F 4Þ

T.
Letting z1 ¼ y1, z2 ¼ y2+iy3, z̄2 ¼ y2 � iy3, z ¼ ðz1; z2; z̄2Þ

T, W ¼ y4, G1 ¼ F1�l1z1, G2 ¼ F2+iF3�l2z2 and
H ¼ F4�l4W, the map (24) may be expressed by

z01 ¼ l1z1 þ G1ðz1; z2; z̄2;W ; mÞ; z02 ¼ l2z2 þ G2ðz1; z2; z̄2;W ; mÞ;

W 0
¼ l4W þHðz1; z2; z̄2;W ; mÞ, ð25Þ

in which l1 ¼
~l1ðmÞ ¼ l1ðvc þ mÞ, l2 ¼

~l2ðmÞ ¼ l2ðvc þ mÞ, ~l1ð0Þ ¼ �1, ~l2;3ð0Þ ¼ a� i$, ~l2;3ð0Þ


 

 ¼ 1. For the

map (25), there exists a local center manifold W ðz1; z2; z̄2; mÞ [44,46], which may be determined by the equation

W ðz01; z
0

2; z̄
0

2; mÞ ¼ l4W ðz1; z2; z̄2; mÞ þHðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ. (26)

On the center manifold the local behavior of the map (25) can be reduced to a three-dimensional map
~Fðz; mÞ, which is now

z01 ¼
~l1ðmÞz1 þ G1ðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ;

z02 ¼
~l2ðmÞz2 þ G2ðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ; ð27Þ

where the Taylor series expansion of W ðz1; z2; z̄2; mÞ and Giðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ about (0,0,0,m) may be
determined by the method which is given in Appendix A.

The three-dimensional map has the following form ~Fðz; eÞ:

z01 ¼
~l1ðmÞz1 þ

X3
iþjþk¼2

gð1Þijk ðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þ O z1j j þ z2j jð Þ

4
� �

,

z02 ¼
~l2ðmÞz2 þ

X3
iþjþk¼2

gð2Þijk ðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þ O z1j j þ z2j jð Þ

4
� �

. ð28Þ

By using the center manifold technique and normal form method of maps, we can reduce the map (28) to the
normal form map Fðz; eÞ, which is given by

z01 ¼ � z1 þ e1z1 þ az3
1 þ bz1 z2j j

2
þO z1j j þ z2j jð Þ

5
� �

,

z02 ¼
~l2ð0Þz2 þ ~e2z2 þ ~cz2

1z2 þ
~dz2 z2j j

2
þO z1j j þ z2j jð Þ

5
� �

. ð29Þ

The normal form map (29), in the real form F(Y; e), is expressed by

y01 ¼ � y1 þ e1y1 þ ay3
1 þ by1ðy

2
2 þ y2

3Þ þ h:o:t,

y02 ¼ ðaþ e2Þy2 � ð$þ e3Þy3 þ ðcy2 � ey3Þy
2
1 þ ðdy2 � fy3Þðy

2
2 þ y2

3Þ þ h:o:t,

y03 ¼ ð$þ e3Þy2 þ ðaþ e2Þy3 þ ðcy3 þ ey2Þy
2
1 þ ðdy3 þ fy2Þðy

2
2 þ y2

3Þ þ h:o:t, ð30Þ

in which, e ¼ (e1, e2, e3)
T, ei ¼ ei(m), ei(0) ¼ 0.
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6. Local codimension two bifurcation of the normal form map

6.1. A Simplified map

Let us assume that there exist period two fixed points for the normal form map F(Y; e). In view of the
normal form map (30), the period two points Y ð2Þ1 and Y ð2Þ2 satisfy the equation

F2
ðY ð2Þi ; eÞ ¼ Y ð2Þi . (31)

Ignoring the terms of high order of e, the solutions of Eq. (31) become

Y ð2Þ1 ¼

ffiffiffiffiffiffiffi
e1
�a

r
; 0; 0

� 	T

; Y ð2Þ2 ¼ �

ffiffiffiffiffiffiffi
e1
�a

r
; 0; 0

� 	T

. (32)

If e1/ao0, there exist the period two points Y ð2Þ ¼ ðY ð2Þ1 ;Y
ð2Þ
2 Þ

T, and they are symmetrical about the origin.
The linearized maps of F(Y; e) at the fixed point and F2(Y; e) at the period two points, respectively, are
given by

Q1 ¼
qFðY ; eÞ

qY






ðY
ð1Þ
0
; eÞ

¼

�1þ e1 0 0

0 aþ e2 �$� e3
0 $þ e3 aþ e2

2
64

3
75;

Q2 ¼
qF2
ðY ; eÞ
qY






ðY
ð2Þ
i
; eÞ

¼

1þ 4e1 0 0

0 q22 q23

0 q32 q33

2
64

3
75;

(33)

in which, Y ð1Þ0 ¼ ð0; 0; 0Þ
T is the trivial fixed point of normal form map (30),

q22 ¼ a2 �$2 þ
2 e$� cað Þ

a
e1 þ 2ae2 � 2$e3; q23 ¼ �2$aþ

2 c$þ eað Þ

a
e1 � 2$e2 � 2ae3,

q32 ¼ �q23; q33 ¼ q22.

The partial bifurcation sets for the normal form map can be determined by computing and analyzing the
eigenvalues of the Jacobian matrices (33). However, a full understanding of the normal form map (30) requires
more than Jacobian matrices (33). So it is necessary to change the normal form map to the polar coordinate
form F(r, y, e0)AR2

�S, (x, r, y)-(x0, r0, y0).
Letting ~e2 ¼ ~l2ð0Þ~e20, ~c ¼ ~l2ð0Þ~c0, ~d ¼ ~l2ð0Þ ~d0, the normal form map (29) becomes

z01 ¼ � z1 1� e1 � az2
1 � b z2j j

2
� �

þO z1j j þ z2j jð Þ
5

� �
,

z02 ¼
~l2ð0Þz2 1þ ~e20 þ ~c0z

2
1 þ

~d0 z2j j
2

� �
þO z1j j þ z2j jð Þ

5
� �

. ð34Þ

In polar coordinates, the map F(z; e0)AR3 is changed to F(x; r; y; e0)AR2
�S, which is given by

x0 ¼ � xð1� e1 � ax2 � br2Þ þ h:o:t;

r0 ¼ rð1þ e20 þ c0x
2 þ d0r

2Þ þ h:o:t;

y0 ¼ yþ y0 þ e30 þ e0x
2 þ f 0r

2 þ h:o:t; ð35Þ

in which e20 ¼ ae2 þ$e3, e30 ¼ ae3 �$e2, c0 ¼ acþ$e, d0 ¼ ad þ$f , e0 ¼ ae�$c, f 0 ¼ af �$d.
We ignore the influence of phase angle y to the map (35) temporarily. By the map (35), a two-dimensional

map is obtained, which is

x0 ¼ � xð1� e1 � ax2 � br2Þ þ h:o:t;

r0 ¼ rð1þ e20 þ c0x
2 þ d0r

2Þ þ h:o:t: ð36Þ
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Letting the iterated map F̂
2

x; r; e0ð Þ ¼ xð2Þ; rð2Þ; e0
� �T

, then we can write

xð2Þ ¼ xþ 2ð�xe1 � ax3 � bxr2Þ þ h:o:t,

rð2Þ ¼ rþ 2ðre20 þ c0x
2rþ d0r

3Þ þ h:o:t. ð37Þ

The map (36) has two fixed points

Y 0 ¼ 0; 0ð Þ
T; Y �1 ¼ 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e20=d0

p� �T

.

The map (37) has two pairs of fixed points Y �21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�e1=a

p
; 0

� �T
, Y �22 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�e1=a

p
; 0

� �T
;

Y �31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be20 � d0e1
ad0 � bc0

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0e1 � ae20
ad0 � bc0

r !T

; Y �32 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be20 � d0e1
ad0 � bc0

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0e1 � ae20
ad0 � bc0

r !T

.

6.2. Simple case (I)

Two simple cases and a complex case are considered. We first analyze the unfolding of the simple case (I)
associated with a scheme of coefficients of high order terms: a40, b40, c0o0, d0o0, ad0�bc0o0, a+c040,
and b+d040. Stable conditions of these fixed points can be determined by computing and analyzing of
eigenvalues of corresponding Jacobian matrices, respectively.

Y0 ¼ (0, 0)T is the trivial fixed point of map (36), local stable condition of which is e140 and e20o0. It
should be noted that the existence of the fixed point Y �1 ¼ ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e20=d0

p
Þ
T requires the condition e20/d0o0.

Local stable condition of the fixed point Y �1 is e14be20/d0 and e2040. The existence of the fixed points
Y �2i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�e1=a

p
; 0

� �T
i ¼ (1, 2) requires the condition e1/ao0, and local stable condition of the fixed points

Y �2i is e1o0 and e20oc0e1/a. The existence of the fixed points Y �3i requires conditions (be20�d0e1)/(ad0�bc0)40
and (c0e1�ae20)/(ad0�bc0)40, the local stable conditions of the fixed points Y �3i are e204c0e1/a and
e20od0ðaþ c0Þe1=ðad0 þ abÞ.

Local behavior of the map (36) is not only determined by e1 and e20, but also by the coefficients of high
order terms of the map. Now we consider the influence of phase angle y to the map (35). By making a
comparison between the map (36) and normal form map, we can unfold qualitative analyses for the normal
form map. The fixed point Y �1 of the map (36) corresponds to the invariant circle of the normal form map (30),
which is associated with the fixed point Y ð1Þ0 ¼ ð0; 0; 0Þ

T. The fixed points Y �2i of the map (36) correspond to
period two fixed points of the map (30). The fixed points Y �3i of the map (36) correspond to the invariant circles
associated with the period two fixed points for the map (30). For the map (30), the trivial fixed point Y ð1Þ0 loses
its stability upon crossing the half-line L1 : e1 ¼ 0, e20o0, and period two fixed points bifurcate simultaneously
from the trivial fixed point Y ð1Þ0 via a period doubling bifurcation. On the line L2 : e20 ¼ c0e1/a (e1o0), Hopf
bifurcation associated with the fixed points Y ð2Þ1 and Y ð2Þ2 occurs for the map (30), and two closed circles
associated with the fixed points Y ð2Þi exist in region R4. Crossing the line L3 : e20 ¼ d0(a+c0)e1/(ad0+ab), e1o0,
the invariant circles associated with the fixed points Y ð2Þ1 and Y ð2Þ2 will change stability, and torus bifurcation
occurs, which possibly lead to tori doubling, phase locked or quasi-attracting invariant circles. The trivial fixed
point Y ð1Þ0 loses its stability upon crossing the half-line L4 : e20 ¼ 0, (e140), and a closed circle bifurcates from
the trivial fixed point Y ð1Þ0 via a non-degenerate Hopf bifurcation. On the line L5 : e20 ¼ d0e1/b (e10o0), the
invariant circle associated with the trivial fixed point Y ð1Þ0 will change its stability, and torus bifurcation occurs,
which possibly lead to torus doubling, phase locking or quasi-attracting invariant circle. In region R5, there
exists possibly tori doubling, phasing locking or quasi-attracting invariant circle. A further investigation for
bifurcation behavior of the normal form map (30), in region R5, is necessary.

In the present case of scheme of coefficients of high order terms: a40, b40, c0o0, d0o0, ad0�bc0o0,
a+c040 and b+d040, the bifurcation set for the map (36), near the critical point e ¼ (e1, e20)

T
¼ (0, 0)T, can

be illustrated by Fig. 2. Only the positive (x,r) quadrant is shown in Fig. 2. Since the portraits are symmetric
under reflection about r axis.
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Fig. 3. The unfolding of simple case (II) a40, b40, c040, d040, ad0�bc0o0. Bifurcation set of the map (36).

Fig. 2. The unfolding of simple case (I) a40, b40, c0o0, d0o0, ad0�bc0o0, a+c040 and b+d040. Bifurcation set of the map (36).

G.W. Luo et al. / Journal of Sound and Vibration 292 (2006) 242–278 251
The bounds of the regions shown in Fig. 2 can be listed as follows:

L1 ¼ e1; e20ð Þ : e1 ¼ 0; e20o0
� �

; L2 ¼ e1; e20ð Þ : e20 ¼
c0

a
e1; e1o0

n o
;

L3 ¼ e1; e20ð Þ : e20 ¼
d0ðaþ c0Þ

aðd0 þ bÞ
e1; e1o0

 �
; L4 ¼ e1; e20ð Þ : e20 ¼ 0; e140

� �
;

L5 ¼ e1; e20ð Þ : e20 ¼
d0

b
e1; e1o0

 �
.
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6.3. Simple case (II)

We analyze the unfolding of the simple case (II) associated with a scheme of coefficients of high order terms:
a40, b40, c040, d040, ad0�bc0o0. The bifurcation set in the simple case is shown in Fig. 3. The formulae
of the bounds L1�L5 of the regions, shown in Fig. 3, are the same algebraically as those in simple case (I).

Let us analyze the local behavior of the normal form map (30) near the bifurcation point e ¼ (0, 0, 0)T by
means of Fig. 3. By comparison with Fig. 2, we can find that period doubling bifurcation and further
transition of the normal form map in the simple case (II) are similar to those in the simple case (I). However,
the difference is that Hopf bifurcation of normal form map associated with the fixed point Y ð1Þ0 in the simple
case (I) is supercritical; in the simple case (II), subcritical. The difference of the unfolding of two simple cases
can be observed obviously in the first and fourth quadrants of Figs. 2 and 3. In the sector region R3, there exist
six fixed points Y0, Y �1, Y �2i and Y �3i. However, only the fixed points Y �3i are stable, and others unstable. By
analyzing the Jacobian matrix of iterated map (37), we can obtain two real eigenvalues associated with the
fixed points Y �3i in the sector region R3, one of which escapes the unit circle from the point (1, 0) upon crossing
the half-line L3. The fixed points Y �3i are stable nodes in the region R3, and not unstable in the sector region R4.
It is to be noted that very complicated behaviors occur in region R4, i.e., there exists possibly tori doubling,
phasing locking or quasi-attracting invariant circle for the normal form in the region.

6.4. Complex case

Now we continue to analyze the unfolding of the complex case associated with a scheme of coefficients of
high order terms: ao0, bo0, c0o0, d0o0, ad0�bc0o0. The bifurcation set of map (36) in the complex case is
shown in Fig. 4. In Fig. 4 only the positive (x, r) quadrant is shown. Since the portraits are symmetric under
reflection about r axis. The bounds of the regions shown in Fig. 4 can be listed as follows:

L1 ¼ e1; e20ð Þ : e1 ¼ 0; e20o0
� �

; L2 ¼ e1; e20ð Þ : e20 ¼ 0; e140
� �

;

L3 ¼ e1; e20ð Þ : e20 ¼
d0

b
e1; e140

 �
; L4 ¼ e1; e20ð Þ : e20 ¼

d0 aþ c0ð Þ

a d0 þ bð Þ
e1; e140

 �
;

L5 ¼ e1; e20ð Þ : e20 ¼
c0

a
e1; e140

n o
.

By making a comparison between the map (36) and normal form map (30), we can unfold qualitative
analyses for the normal form map in the complex case. Now we analyze the local behavior of the normal form
map (30) near the bifurcation point e ¼ (0, 0, 0)T by means of Fig. 4. For the normal form map, in region R1

we have three fixed points, the stable trivial fixed point Y ð1Þ0 ¼ ð0; 0; 0Þ
T and unstable period two points
Fig. 4. The unfolding of a complex case, ao0, bo0, c0o0, d0o0, ad0�bc0o0. Bifurcation set of the map (36).



ARTICLE IN PRESS
G.W. Luo et al. / Journal of Sound and Vibration 292 (2006) 242–278 253
Y ð2Þ ¼ ðY ð2Þ1 ;Y
ð2Þ
2 Þ

T. As we have known, the trivial fixed point is node/focus, and period two points are saddles
in the region R1. As the parameters cross the line L2 from the region R1, Hopf bifurcation of the trivial fixed
point Y ð1Þ0 occurs so that a quasi-periodic attractor represented by the attracting closed circle is generated, and
period two points retain their sense. As the parameters cross the line L3 from the region R2, the closed circle
becomes non-attracting and the torus bifurcation occurs, which causes that the quasi-periodic attractor
represented by two attracting closed circles is born. The quasi-periodic attractor represented by two closed
circles is attracting in region R3, and non-attracting in region R4. In region R5, there exist the unstable trivial
fixed point, unstable periodic two points and non-attracting invariant circle associated with the trivial fixed
point. In region R6, we have the unstable trivial fixed point and non-attracting invariant circle.

It is to be noted that the quasi-periodic attractor represented by two closed circles is generated in different
ways in the simple and complex cases. In the simple case, two closed circles are generated by Hopf bifurcation
of period two points; in the complex case by torus bifurcation.

The bifurcation sets for the map (36), corresponding to the other cases of scheme of coefficients of high
order terms, can be obtained by the similar method used in the above-mentioned three cases.
6.5. Bifurcation set of the normal form map in simple case (I)

In view of Jacobian matrices (33), we can find that there exist the period two fixed points Y ð2Þ ¼ ðY ð2Þ1 ;Y
ð2Þ
2 Þ

T

as e1/ao0. According to the unfolding of the simple case (I), the bifurcation set of the map (30), near
e ¼ (0, 0, 0)T, can be further illustrated by Fig. 5 in which ao0. Three possible cases for the eigenvalues l1 and
l2,3 of Jacobian matrix Q1 escaping the unit circle are shown in Fig. 6. The unfolding of normal form map
(30), corresponding to the simple case (II) and complex case, can be obtained by the similar method used in the
present case. The bounds of the regions shown in Fig. 5 can be listed as follows:

�
e$þ ca

a
e1 þ ae2 þ$e3 ¼ 0,

L11 : e1 ¼ 0; e240; L12 : e2 ¼ 0; e140; L13 : e2 ¼
e$þ ca

aa
e1; e1o0,

L21 : e1 ¼ 0; e3o0; L22 : e3 ¼ 0; e140; L23 : e3 ¼
e$þ ca
$a

e1; e1o0. ð38Þ
Fig. 5. Bifurcation set of the map (30) in the sample case (I).
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Fig. 6. Three possible cases for the eigenvalues l1 and l2,3 of Jacobian matrix Q1, escaping the unit circle, in the sample case (I).
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�
ad þ$f

b
e1 þ ae2 ¼ $e3 ¼ 0;

ðad þ$f Þðaþ acþ$eÞ

aðbþ ad þ$f Þ
e1 þ ae2 ¼ $e3 ¼ 0,

L14 : e2 ¼
ad þ$f

ab
e1; e1o0; L15 : e2 ¼

ðad þ$f Þðaþ acþ$eÞ

aaðbþ ad þ$f Þ
e1; e1o0,

L24 : e3 ¼
ad þ$f

$b
e1; e1o0; L25 : e3 ¼

ðad þ$f Þðaþ acþ$eÞ

$aðbþ ad þ$f Þ
e1; e1o0. ð39Þ

Here we can assume, without loss of generality, ao0. In the formulae (38) and (39), e$þ ca ¼ c0o0,
ad þ$f ¼ d0o0.

By analyzing the eigenvalues of Jacobian matrices Q1 and Q2, we can conclude that when the parameters
pass across the regions as Ri1-Ri2 (i ¼ 1, 2), the type of the fixed point of period one changes from stable
node to saddle; see Fig. 5. When the parameters cross the line Li1, the period doubling bifurcation associated
with the fixed point of period one occurs. When the parameters pass across the regions as Ri2-Ri3, then the
types of period two points Y ð2Þ1 ðY

ð2Þ
2 Þ change as stable node-stable focus-unstable focus. On the line Li3,

Hopf bifurcation of period two fixed points takes place. When the parameters pass across the regions as Ri1-
Ri4, the type of the fixed point of period one changes from stable focus to unstable focus, and on the line Li2,
Hopf bifurcation associated with the fixed point of period one occurs. The direction of Hopf bifurcation
(supercritical or subcritical) depends on the high order terms of the normal form map.

By analysis of unfolding of the normal form map (30) in the present case, we can find that on the line Li4 the
invariant circles associated with the fixed points of period two will change stability, and torus bifurcation
occurs. On the line Li5 the invariant circle associated with the fixed point of period one will change stability,
and torus bifurcation occurs.

According to the center manifold theory, we know that local behavior of the map f(v,X), near the
bifurcation point vc, is equivalent to that of F(Y; e) for e near e ¼ (0, 0, 0)T. By virtue of the analyses of local
bifurcation of normal form map (30), we can find out dynamical behavior of the map f(v,X) in the case of
codimension two bifurcation considered.

7. Numerical analyses

7.1. Codimension two bifurcation of a dual component system with vibro-impact

In this section, the analysis developed in the former section is verified by the presentation of results for the
vibro-impact system shown in Fig. 1(a). The existence and stability of q ¼ 1/1 motion are analyzed explicitly.
Also, local bifurcations at the points of change in stability, discussed in the previous section, are considered,
thus giving some information on dynamical behavior near the point of codimension two bifurcation. The
vibro-impact system, with system parameters mm ¼ 3.0, f0 ¼ 2.0, d ¼ 0.01, z1 ¼ z2 ¼ 0.05, R ¼ 0.7, has been
chosen for analyzing the question. The forcing frequency o and eigenfrequency o0 are taken as the control
parameters, i.e. v ¼ (o0,o)

T. The eigenvalues of Df v; X �ð Þ are computed with oA[3.138, 3.32] and
o0A[1.26, 1.35]. All eigenvalues of Df v; X �ð Þ stay inside the unit circle for v ¼ (1.26, 3.138)T. By increasing
o and o0 gradually from the point v ¼ (1.26, 3.138)T to change the control parameter v, we found that there
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exist a real eigenvalue l1(vc) ¼ �1.0000001 and a pair of complex conjugate eigenvalues l2,3(vc) ¼
�0.630563570.7761371i (9l2,3(vc)9 ¼ 0.9999996) which are very close to the unit circle, and the eigenvalue
l4(v) still stays inside the unit circle as v equals vc ¼ (1.318563, 3.268051)T. The eigenvalues l1(v) and l2,3(v)
have already escaped the unit circle as o and o0 pass through o ¼ 3.268052 and o0 ¼ 1.318565 increasingly.
The eigenvalues l1(v) and l2,3(v) almost escape the unit circle simultaneously, and vc ¼ (1.318563, 3.268051)T

may be approximately taken as the value of codimension two bifurcation.
Numerical analyses are carried out to unfold dynamic behavior of the impact system near the point of

codimension two bifurcation. A local bifurcation portrait, near the value of bifurcation, is plotted in Fig. 7.
The symbols (sub) and (sup) represent subcritical and supercritical, respectively, in the figure. The whole
dynamical transitions from simulation are shown in the bifurcation diagrams for a series of values of o0

(Figs. 8 and 9) in which the velocities of the mass M2, immediately after impact, are shown versus the forcing
frequency o. One can observe, from Figs. 8(a)–(c) that the system exhibits the stable q ¼ 1/1 motion in two
Fig. 7. Local bifurcation portrait near the point of condimension two bifurcation.

Fig. 8. Bifurcation diagrams near the point of codimension two bifurcation (o0o1.318563): (a) o0 ¼ 1.318; (a1) o0 ¼ 1.318;

(b) o0 ¼ 1.31; and (c) o0 ¼ 1.305.
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different regions of forcing frequency, and the second one occurs near the value of codimension two
bifurcation. The q ¼ 1/1 motion, corresponding to the first region of o, will undergo Hopf bifurcation with
increasing o. In the second region of forcing frequency associated with the q ¼ 1/1 motion, the motion will
undergo period doubling bifurcation with increase in the forcing frequency o, and the q ¼ 2/2 motion
stabilizes. And then Hopf bifurcation of q ¼ 2/2 motion occurs so that the quasi-periodic motion associated
with the motion is generated. The transition processes of q ¼ 1/1 motion are plotted locally in an amplified
form in Fig. 8(a1). The results from simulation show that no period doubling cascade of q ¼ 1/1 motion
occurs, near the point of codimension two bifurcation, due to occurrence of Hopf bifurcation of q ¼ 2/2
motion. Moreover, subcritical Hopf bifurcation of q ¼ 1/1 motion, in the second window, occurs with
decrease in the forcing frequency o as seen in Figs. 7, 8 and 10. The type of q ¼ 1/1 fixed point changes from
stable focus to unstable focus. It should be noted that the second region of forcing frequency associated with
q ¼ 1/1 motion is narrow and vanishes for o041.318563, and the q ¼ 1/1 motion undergoes more complex
bifurcation process than that in the first region; with decrease in the eigenfrequency o0 (o0o1.318563), the
second region of forcing frequency associated with q ¼ 1/1 motion becomes wide gradually as seen in Fig. 7
and Figs. 8(a)–(c). The second window of q ¼ 1/1 motion vanishes for o0X1.318563; see Fig. 9. Some
projected Poincaré sections are plotted in Figs. 10–12. The Poincaré section is taken in the form
s ¼ ðx1; _x1;x2; _x2; yÞ 2 R

4
� S; x1 � x2 ¼ d; _x1 ¼ _x1þ; _x2 ¼ _x2þ

� �
, which is four-dimensional. The section is

projected to the ðx2; _x2þÞ or ðt; _x1þÞ plane, etc., which is called the projected Poincaré section. The q ¼ 1/1
point, with the corresponding parameter v, is taken as the initial map point in every numerical analysis. We
choose the eigenfrequency o0 ¼ 1.318 and change the forcing frequency o in numerical analyses. It is shown,
by the numerical results, that the system exhibits stable q ¼ 1/1 impact motion with oA(3.266801, 3.266961).
The q ¼ 1/1 motion undergoes subcritical Hopf bifurcation as o passes through oc1 ¼ 3.266801 in a
decreasing way, which is illustrated by the center manifold-normal form method of maps used in Ref. [23]. At
Fig. 9. Bifurcation diagrams near the point of codimension two bifurcation (o041.318563): (a) o0 ¼ 1.321; and (b) o0 ¼ 1.33.

Fig. 10. The projected Poincaré sections: (a) transient points as well as chaotic attractor, starting from the initial condition near the q ¼

1/1 point (unstable focus), o ¼ 3.2667, o0 ¼ 1.318; (a1) local map near the unstable q ¼ 1/1 point, o ¼ 3.2667, o0 ¼ 1.318.
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Fig. 11. The projected Poincaré sections: (a) transient points as well as the attracting invariant circles associated with q ¼ 2/2 points,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 3.2672, o0 ¼ 1.318; (b) the attracting invariant circles

associated with q ¼ 2/2 points, o ¼ 3.2674, o0 ¼ 1.318; (c) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 3.27,

o0 ¼ 1.318; (d) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 3.286, o0 ¼ 1.318; (e) phase locking, o ¼ 3.287,

o0 ¼ 1.318; and (f) chaos, o ¼ 3.288, o0 ¼ 1.318.
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oc1 ¼ 3.266801, the eigenvalues of Df o; X �ð Þ and associated bifurcation parameters are given as follows:

l1;2ðoc1Þ ¼ �0:6306586� 0:7760623i; l1;2ðoc1Þ


 

 ¼ 1:000001; l3ðoc1Þ ¼ �0:9980284;

l4ðoc1Þ ¼ �0:314363;
d l1ðmÞ


 


dm






m¼0

¼ 2:935115; m ¼ oc1 � o; f 1ð0Þ ¼ �1:87756:

We can conclude, according to Refs. [23,47], that a subcritical Hopf bifurcation of q ¼ 1/1 motion occurs for
oo3.266801, and the q ¼ 1/1 fixed point changes from stable focus to unstable focus. Fig. 10 shows transient
points as well as chaotic attractor, starting from initial condition near the unstable q ¼ 1/1 focus for
o ¼ 3.2667.

Period doubling bifurcation of q ¼ 1/1 motion occurs as o is increased gradually and passes through
oc2 ¼ 3.266961, and the system exhibits stable q ¼ 2/2 impact motion; see Fig. 8(a1). The q ¼ 2/2 motion
changes its stability for o43.2671, and Hopf bifurcation of q ¼ 2/2 motion occurs so that the system exhibits
quasi-periodic impact motion associated with q ¼ 2/2 points. The quasi-periodic attractor is represented by
two attracting invariant circles in projected Poincaré section. Figs. 11(a)–(d) show transient points as well as
two attracting invariant circles, starting from the initial condition near the q ¼ 1/1 point. It is to be noted that
two attracting invariant circles are smooth in nature and symmetrical about the corresponding q ¼ 1/1 point
near the value o ¼ 3.2671 of Hopf bifurcation of q ¼ 2/2 motion. As the value of o moves further away from
the value of Hopf bifurcation, two attracting invariant circles expand, and the smoothness and symmetry of
the quasi-periodic attractor are changed by degrees until they are destroyed. With further increase in o, the
phase locking takes place so that the quasi-periodic motion gets locked into a periodic attractor of higher
(than period two) period (see Fig. 11(e)), which subsequently becomes unstable and chaotic; see Fig. 11(f).

The q ¼ 1/1 motion, corresponding to the first region of o, undergoes Hopf bifurcation as o passes through
oc3 ¼ 3.021382 increasingly. With increase in o, the quasi-periodic attractor gets locked into the q ¼ 3/3 orbit,
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Fig. 12. The projected Poincaré sections: (a) the attracting invariant circle associated with q ¼ 1/1 point, o ¼ 3.022; (b) q ¼ 3/3 fixed

points, o ¼ 3.025; (c) q ¼ 6/6 fixed points, o ¼ 3.08; and (d) chaos, o ¼ 3.25.
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and then period doubling bifurcation of q ¼ 3/3 motion occurs, and the motion transits to chaos by
Feigenbaum period-doubling cascade of q ¼ 3/3 orbit; see Figs. 8 and 12.

7.2. Codimension two bifurcation of the impact-forming machinery

Two actual examples, the impact-forming machinery and inertial shaker, are chosen to further analyze the
phenomenon of codimension two bifurcation of impact maps. The mechanical model for an impact-forming
machinery with masses M1 and M2 is shown in Fig. 1(b) [48]. Displacements of the masses M1 and M2 are
represented by X1 and X2, respectively. The masses are connected to linear springs with stiffnesses K1, K2 and
K3, and linear viscous dashpots with damping constants C1, C2 and C3. The damping in the mechanical model
is assumed as the proportional damping of the Rayleigh type. The excitation on mass M2 is harmonic with
amplitude P ¼ 2m0rO

2. O is the excitation frequency, and t is the phase angle. The mass M1 impacts mutually
with the mass M2 when the difference of their displacements equals the gap D, i.e., X1(t)�X2(t) ¼ D. The
impact is described by the conservation law of momentum and a coefficient of restitution R. Between
consecutive impacts, the non-dimensional differential equations of motion are given by

mm 0

0 1

� �
€x1

€x2

( )
þ

2zð1þ mc1
Þ �2z

�2z 2zð1þ mc3
Þ

" #
_x1

_x2

( )
þ

mk1
þ 1 �1

�1 mk3
þ 1

" #
x1

x2

( )
¼

0

1

 �
sinðotþ tÞ, (40)

where a dot ( � ) denotes differentiation with to the non-dimensional time t, and the non-dimensional quantities

mm ¼
M1

M2

; mki
¼

Ki

K2

; mci
¼

Ci

C2

; i ¼ 1; 3

o ¼ O

ffiffiffiffiffiffiffi
M2

K2

r
; t ¼ T

ffiffiffiffiffiffiffi
K2

M2

r
; z ¼

C2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2M2

p ; d ¼
D � K2

M2g
; xi ¼

X iK2

P
ð41Þ

have been introduced.
Let _xi� and _xiþ (i ¼ 1, 2) represent the velocities of immediately before and after the impact of the masses

Mi, respectively.
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Fig. 13. Local bifurcation portrait near the point of codimension two bifurcation.
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Let us choose a Poincaré section: s ¼ ðx1; _x1;x2; _x2; yÞ 2 R
4
� S; x1 � x2 ¼ d; _x1 ¼ _x1þ; _x2 ¼ _x2þ

� �
to

establish the Poincaré map X0 ¼ f (v,X) [24].
The impact-forming system, with system parameters: mm ¼ 2.0, mk1

¼ 4:0, mk3
¼ 3:0, d ¼ 0.02 and R ¼ 0.7,

has been chosen for analysis. The forcing frequency o and damping z are taken as the control parameters, i.e.
v ¼ (z,o)T. The eigenvalues of Df v; X �ð Þ are computed with oA[5.025, 5.2] and zA[0.01, 0.02]. All eigenvalues
of Df v; X �ð Þ stay inside the unit circle for v ¼ (0.02, 5.025)T. By gradually increasing o and decreasing z from
the point v ¼ (0.02, 5.025)T to change the control parameter v, we can obtain a real eigenvalue
l1(vc) ¼ �1.00000080 and a pair of complex conjugate eigenvalues l2,3(vc) ¼ �0.376848870.9262742i
(9l2,3(vc)9 ¼ 0.9999994) which are very close to the unit circle, and the fourth eigenvalue (l4(vc) ¼ �0.4031064)
still stays inside the unit circle as v equals vc ¼ (0.0121275, 5.074519)T. The eigenvalues l1(v) and l2,3(v) have
escaped the unit circle as o (increasingly) and z (decreasingly) pass through o ¼ 5.07452 and z ¼ 0.0121274.
The eigenvalues l1(v) and l2,3(v) almost escape the unit circle simultaneously, so vc ¼ (0.0121275, 5.074519)T

may be approximately taken as the value of codimension two bifurcation.
Local behavior of the impact-forming system, near the point of codimension two bifurcation, is obtained by

numerical simulation. The local bifurcation portrait near the critical value is plotted in Fig. 13. The
bifurcation diagrams are shown for a series of values of z in Fig. 14. There exist two windows of q ¼ 1/1
motion in Figs. 14(a)–(c), the second of which occurs near the value of codimension two bifurcation. It should
be noted that the second region of forcing frequency associated with q ¼ 1/1 motion is narrow, and vanishes
for zp0.0121275 (see Figs. 14(d) and (e)). With increase in damping z (z40.0121275), the region of forcing
frequency becomes wide generally; see Figs. 14(a)–(c). The q ¼ 1/1 motion, corresponding to the first region of
o, will undergo supercritical Hopf bifurcation with increasing o; see Fig. 14. In the second region of forcing
frequency associated with the q ¼ 1/1 motion, the motion will undergo period doubling bifurcation with
increase in the forcing frequency o, and the q ¼ 2/2 motion stabilizes. And then Hopf bifurcation of q ¼ 2/2
motion occurs so that the system exhibits the quasi-periodic motion associated with the motion. The transition
process of q ¼ 1/1 motion is plotted locally in an amplified form in Fig. 14(a1). The results from simulation
show that no period doubling cascade of q ¼ 1/1 motion occurs, near the point of codimension two
bifurcation, due to occurrence of Hopf bifurcation of q ¼ 2/2 motion. Moreover, subcritical Hopf bifurcation
of q ¼ 1/1 motion, in the second window, occurs with decrease in the forcing frequency o as seen in
Figs. 14(a)–(c) and Fig. 16, and the type of q ¼ 1/1 fixed point changes from stable focus to unstable focus.
Some projected Poincaré sections are plotted in Figs. 16–18. We choose the damping ratio z ¼ 0.01225 and
change the forcing frequency o in numerical analyses. The numerical results show that the system exhibits
stable q ¼ 1/1 motion with oA(5.073489, 5.074559) as seen in Figs. 14(a) and 15. The q ¼ 1/1 motion
undergoes subcritical Hopf bifurcation as o passes through oc1 ¼ 5.073489 decreasingly, and the type of
q ¼ 1/1 fixed point changes from stable focus to unstable focus; see Fig. 16. The period doubling bifurcation of
q ¼ 1/1 motion occurs as o is increased gradually and passes through oc2 ¼ 5.074559, and the system exhibits
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Fig. 14. Bifurcation diagrams near the point of codimension two bifurcation (a) z ¼ 0.01225; (a1) z ¼ 0.01225; (b) z ¼ 0.0135;

(c) z ¼ 0.0175; (d) z ¼ 0.012; and (e) z ¼ 0.007.

Fig. 15. The phase plane portrait and time trajectory of the mass M2, o ¼ 5.074, z ¼ 0.01225.
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stable q ¼ 2/2 motion; see Fig. 14(a1). The q ¼ 2/2 motion changes its stability for o45.07585, and Hopf
bifurcation of q ¼ 2/2 motion occurs so that the system exhibits quasi-periodic impact motion associated with
q ¼ 2/2 points as seen in Figs. 17(a)–(d). With further increasing o, the closed circle becomes quasi-attracting
[23]. The quasi-attracting invariant circle is attracting for the map point inside the circle, and repelling for the
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Fig. 16. The projected Poincaré sections: (a) transient points as well as q ¼ 9/9 fixed points, starting from the initial codition near the

q ¼ 1/1 point (unstable focus), o ¼ 5.0724, z ¼ 0.01225; and (a1) local map near the unstable q ¼ 1/1 point, o ¼ 5.0724, z ¼ 0.01225.

Fig. 17. The projected Poincaré sections: (a) transient points as well as the attracting invariant circles associated with q ¼ 2/2 points,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 5.076, z ¼ 0.01225; (b) the attracting invariant circles

associated with q ¼ 2/2 points, o ¼ 5.077, z ¼ 0.01225; (c) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 5.083,

z ¼ 0.01225; (d) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 5.093, z ¼ 0.01225; (e) chaos, o ¼ 5.095, z ¼ 0.01225;

and (f) chaos, o ¼ 5.096, z ¼ 0.01225.
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map point outside it. The system falls into chaotic motion immediately via the quasi-attracting invariant circle;
see Figs. 17(e) and (f).

The q ¼ 1/1 motion, corresponding to the first region of o, undergoes supercritical Hopf bifurcation as o
passes through oc3 ¼ 4.74017 increasingly; see Figs. 14, 18(a) and (b). With increase in o, the quasi-periodic
attractor transits to chaos via phase locking; see Figs. 18(c) and (d).

7.3. Codimension two bifurcation of an inertial shaker

The inertial shaker is a typical vibro-impact machinery, which is widely used in casting industry. The
mechanical model for an inertial vibro-impact shaker is shown in Fig. 1(c) [49]. The masses of shaker and cast
are represented by M and m, respectively, and the displacements of them are represented by X1 and X2. The
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Fig. 18. The projected Poincaré sections: (a) transient points as well as the attracting invariant circles associated with q ¼ 1/1 points,

o ¼ 4.75, z ¼ 0.01225; (b) the attracting invariant circles associated with q ¼ 1/1 points, o ¼ 4.8, z ¼ 0.01225; (c) phase locking o ¼ 4.85,

z ¼ 0.01225; and (d) chaos, o ¼ 4.855, z ¼ 0.01225.

G.W. Luo et al. / Journal of Sound and Vibration 292 (2006) 242–278262
cast bounces on a flat horizontal surface of the shaker. The shaker is connected to the supporting base by the
linear spring with stiffness K and dashpot with damping coefficient C. The excitation on the shaker is
harmonic with amplitude F0. The shaker impacts mutually with the cast when they are on the same height so
that the cast exhibits the bouncing motion. The impact is described by a coefficient of restitution R. Between
impacts, the non-dimensional differential equations of motion of the inertial shaker are given by

€x1 þ 2z _x1 þ x1 ¼ sinðotþ tÞ; €x2 ¼ �1=b. (42)

Here the non-dimensional quantities are

mm ¼
m

M
; o ¼ O

ffiffiffiffiffiffi
M

K

r
; t ¼ T

ffiffiffiffiffiffi
K

M

r
; z ¼

C

2
ffiffiffiffiffiffiffiffiffi
KM
p ; b ¼

F 0

Mg
; xi ¼

X iK

F 0

. (43)

Let _xi� and _xiþ (i ¼ 1, 2) represent the velocities of immediately before and after the impact of two masses,
respectively.

Let us choose a Poincaré section: s ¼ ðx1; _x1;x2; _x2; yÞ 2 R4
� S; x1 � x2 ¼ 0; _x1 ¼ _x1þ; _x2 ¼ _x2þ

� �
to

establish the Poincaré map X0 ¼ f (v,X) [24].
The inertial shaker, with system parameters z ¼ 0.0788195, b ¼ 2.2 and R ¼ 0.7, has been chosen for

analyzing the question of codimension two bifurcation of periodic motion. The forcing frequency o and
distribution of masses mm are taken as the control parameters, i.e. v ¼ (mm,o)

T. The eigenvalues of Jacobian
matrix Df v; X �ð Þ are computed with oA[2.8, 2.934] and mmA[0.45, 0.485]. All eigenvalues of Df v; X �ð Þ stay
inside the unit circle for v ¼ [0.485, 2.934]T. By gradually decreasing o and mm from the point v ¼ [0.485,
2.934]T to change the control parameter v, we found that there exist a real eigenvalue l1(vc) ¼ �1.00000001
and a pair of complex conjugate eigenvalues l2,3(vc) ¼ �0.5757929970.81759484i, 9l2,3(vc)9 ¼ 0.99999944
which are very close to the unit circle, and the eigenvalue l4(v) still stays inside the unit circle
(l4(oc) ¼ �0.34619192) as v equals vc ¼ (0.4621973, 2.85100014)T. The eigenvalues l1(v) and l2,3(v) have
already escaped the unit circle as o and mm pass through o ¼ 2.85100012 and mm ¼ 0.46219715 decreasingly.
The eigenvalues l1(v) and l2,3(v) almost escape the unit circle simultaneously, and vc ¼ (0.4621973,
2.85100014)T may be approximately taken as the value of codimension two bifurcation.
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Fig. 19. Local bifurcation portrait near the point of codimension two bifurcation.

Fig. 20. Bifurcation diagram for mm ¼ 0.4629.
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Local behavior of the inertial shaker, near the point of codimension two bifurcation, is obtained by
numerical simulation, which is shown in Fig. 19 (see also Fig. 20).

Some projected Poincaré sections are plotted in Fig. 21. We choose the distribution of masses mm ¼ 0.4629
and change the forcing frequency o in numerical analyses. It is shown, by numerical results, that the system
exhibits stable q ¼ 1/1 motion with oA(2.8525874, 2.853464). Period doubling bifurcation of q ¼ 1/1 motion
occurs as o is increased gradually and passes through oc1 ¼ 2.853464, and the system exhibits stable q ¼ 2/2
impact motion. The q ¼ 2/2 motion changes its stability for o42.85443, and Hopf bifurcation of q ¼ 2/2
motion occurs so that the system exhibits quasi-periodic impact motion associated with q ¼ 2/2 points as seen
in Figs. 21(a)–(d). With further increase in o, the phase locking takes place so that the quasi-periodic motion
gets locked into a periodic attractor of higher (than period two) period, which subsequently becomes unstable
and chaotic; see Figs. 21(e) and (f).

As o passes through oc2 ¼ 2.8525874 decreasingly, a subcritical Hopf bifurcation of q ¼ 1/1 motion occurs.
At the critical value oc2 ¼ 2.8525874, the eigenvalues of Jacobian matrix Df (o,X*) and associated bifurcation
parameters are given as follows:

l1;2ðoc2Þ ¼ �0:57390452� 0:81892223i; l1;2ðoc2Þ


 

 ¼ 1:00000001; l3ðoc2Þ ¼ �0:99753039;

l4ðoc2Þ ¼ �0:3471157;
d l1;2ðmÞ


 


dm






m¼0

¼ 5:611263; m ¼ oc2 � o; f 1ð0Þ ¼ �2:7531;
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Fig. 22. The projected Poincaré sections: (a) transient points as well as chaotic attractor with chattering impacts, starting from the initial

condition near the q ¼ 1/1 point (unstable focus), o ¼ 2.851, mm ¼ 0.4629; (a1) local map near the unstable q ¼ 1/1 point, o ¼ 2.851,

mm ¼ 0.4629.

Fig. 21. The projected Poincaré sections: (a) transient points as well as the attracting invariant circles associated with q ¼ 2/2 points,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 2.856, mm ¼ 0.4629; (b) the attracting invariant circles

associated with q ¼ 2/2 points, o ¼ 2.859, mm ¼ 0.4629; (c) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 2.85,

mm ¼ 0.4629; (d) the attracting invariant circles associated with q ¼ 2/2 points, o ¼ 2.89, mm ¼ 0.4629; (e) phase locking, o ¼ 2.97,

mm ¼ 0.4629; and (f) chaos, o ¼ 3, mm ¼ 0.4629.
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by which we know the Poincaré map of the vibro-impact system has a family of repelling invariant circles for
o42.8525874, and the q ¼ 1/1 point is stable. The fixed point of q ¼ 1/1 impact motion becomes an unstable
focus for oo2.8525874, and transits to chaotic motion with chattering impacts; see Fig. 22. The chattering
impacts mean that the time interval between any two consecutive impacts, in the motion, is far less than one
cycle of the forcing [19]. The chattering impacts generally increase fretting of components of vibro-impact
systems and noise levels.
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Fig. 23. Schematic of the vibro-impact system.
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By studying codimension two bifurcation of three vibro-impact systems, we can find that these systems
exhibit similar dynamical behavior near the points of codimension two bifurcations. It is to be noted that the
three representative examples analyzed all correspond to the simple case (II) introduced in Section 6. A large
number of numerical analyses for the three mechanical models of Fig. 1 have been done, but we have not
found the other dynamical behaviors near the points of codimension two bifurcations except that in the simple
case (II). However, we find the codimension two bifurcations and transition phenomena of periodic-impact
motions associated the complex case by analyzing a three-degree-of-freedom vibro-bouncing system, which
are introduced briefly in the following text.
7.4. Two examples associated with the complex case

In order to observe the codimension two bifurcations and transition phenomena of periodic-impact motions
associated the complex case, we consider the mechanical model for a three-degree-of-freedom vibro-bouncing
system, which is shown in Fig. 23. A body with mass m bounces on the flat horizontal surface of a two- degree-
of-freedom vibro-bench with masses M1 and M2. Displacements of these masses m, M1 and M2 are
represented by Y0, X1 and X2, respectively. The masses M1 and M2 are connected to linear springs with
stiffnesses K1 and K2, and linear viscous dashpots with damping constants C1 and C2. The excitations on both
masses of the vibro-bench are harmonic with amplitudes P1 and P2. O is the excitation frequency, and t is the
phase angle. The mass M1 impacts mutually with the bouncing mass m when they are on the same height, so
the mass m exhibits the bouncing motion. The impact is described by the conservation law of momentum and
a coefficient of restitution R, and it is assumed that the duration of impact is negligible compared to the period
of the force.

The motion processes of the system, between any two consecutive impacts, are considered. Between any two
consecutive impacts, the time T is always set to zero directly at the instant when the former impact is over, and
the phase angle t is used only to make a suitable choice for the origin of time in the calculation. The state of
the vibro-impact system, immediately after impact, has become initial conditions in the subsequent process of
the motion. Between consecutive impacts, the non-dimensional differential equations of motion are given by
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where a dot ( � ) denotes differentiation with respect to the non-dimensional time t, and the non-dimensional
quantities are given by
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(46)

When the impact occurs, for x1(t) ¼ y(t), the velocities of masses m and M1 are changed according to the
conservation law of momentum, and the impact equation of both masses m and M1 and the coefficient of
restitution R are given by

_x1� þ m _y� ¼ _x1þ þ m _yþ; _x1þ � _yþ ¼ �Rð _x1� � _y�Þ, (47)

where the velocities of two masses M1 and m, immediately before and after the impact, are represented
respectively by _x1�, _y�, _x1þ and _yþ.

The velocities, immediately after the impact, _x1þ and _yþ are given by

_x1þ ¼
1� mR

1þ m
_x1� þ

mð1þ RÞ

1þ m
_y�; _yþ ¼

1þ R

1þ m
_x1� þ

m� R

1þ m
_y�. (48)

Letting y ¼ ot, we can choose a Poincaré section s ¼ x1; _x1; x2; _x2; y; _y; yð Þ 2 R6
� S;x1 ¼ y; _x1 ¼ _x1þ;

�
_y ¼

_yþg to establish Poincaré map of the impact system, which can be derived analytically by using the method
introduced in Sections 2–4. The disturbed map of period one single-impact motion is expressed by

X 0 ¼ ~f ðv;X Þ, (49)

where XAR6, v is varying parameter, and vAR1 or R2; X ¼ X � þ DX , X 0 ¼ X � þ DX 0, DX ¼

ðD _x1þ;Dx1;D _x2;Dx2;D _yþ;DtÞ
T and DX 0 ¼ ðD _x01þ;Dx01;D _x

0

2;Dx02;D _y
0

þ
;Dt0ÞT are the disturbed vectors of X �,

X � ¼ ð _x1þ; x10; _x2; x20; _yþ; t0Þ
T is a fixed point in the hyperplane s.

An interesting torus doubling bifurcation is found to exist in the vibro-impact system near the point of
codimension two bifurcation associated with the complex case. The torus doubling bifurcation makes the
quasi-periodic attractor associated with q ¼ 1/1 motion transit to the other quasi-periodic attractor
represented by two attracting closed circles. The phenomena concerning torus doubling bifurcation are
demonstrated by two examples given in the following text.

The vibro-impact system, with system parameters mm ¼ 1.2, mk ¼ 1.5, b ¼ 0.5, R ¼ 0.7, f20 ¼ 0 and
z ¼ 0.05, has been chosen for analysis. The forcing frequency o and the distribution of masses m are taken as
the control parameters, i.e. v ¼ (m,o)T. The eigenvalues of D ~f ðv;X �Þ are computed with oA[0.698, 0.72] and
mA[0.629, 0.65]. All eigenvalues of D ~f ðv;X �Þ stay inside the unit circle for v ¼ (0.715, 0.65)T. By gradually
decreasing m and o from the point v ¼ (0.715, 0.65)T to change the control parameters v, we obtain a real
eigenvalue l1(vc) ¼ �1.0000005 and a pair of complex conjugate eigenvalues l2,3(vc) ¼ 0.430193770.9027297i
(9l2,3(vc)9 ¼ 0.999994) which are very close to the unit circle, and the remaining eigenvalues still stay inside the
unit circle (l4(vc) ¼ �0.2114051, l5,6(vc) ¼ �0.0312434670.3285842i) as v equals vc ¼ (0.6998734,
0.6336134)T. The eigenvalues l1(v) and l2,3(v) have escaped the unit circle as v passes through
v ¼ (0.6998732, 0.6336132)T decreasingly. The eigenvalues l1(v) and l2,3(v) almost escape the unit circle
simultaneously, so vc ¼ (0.6998734, 0.6336134)T is approximately taken as the value of codimension two
bifurcation.

Dynamical behavior of the system, near the point of codimension two bifurcation, is observed by numerical
simulation. The partial bifurcation set near the critical value is plotted in Fig. 24(a). We choose the
distribution of masses m ¼ 0.71 and change the forcing frequency o in numerical analyses. When o passes
through oc1 ¼ 0.6352363 decreasingly, a complex conjugate pair eigenvalues of D ~f ðo;X �Þ escape the unit
circle firstly, and Hopf bifurcation associated with q ¼ 1/1 motion occurs. The quasi-periodic attractor is
shown for o ¼ 0.635 in Fig. 25(a). With decrease in the forcing frequency o, instability of the closed circle
associated with q ¼ 1/1 point occurs, and torus bifurcation takes place so that two attracting invariant circles
are generated; see Figs. 25(b) and (c) which show transient points, the non-attracting circle as well as the quasi-
periodic attractor represented by two attracting invariant circles, starting from the initial condition near the



ARTICLE IN PRESS

Fig. 25. The projected Poincaré sections: (a) transient points as well as the attracting invariant circle associated with q ¼ 1/1 motion,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 0.635, m ¼ 0.71; (b) transient points, the non-attracting

invariant circle as well as two attracting invariant circles caused by torus bifurcation, starting from the initial condition near the fixed point

of q ¼ 1/1 motion, o ¼ 0.6348, m ¼ 0.71; (c) two attracting invariant circles, o ¼ 0.6347, m ¼ 0.71; (d) tori doubling, o ¼ 0.6342,

m ¼ 0.71.

Fig. 24. The partial bifurcation set near the point of codimension two bifurcation: (a) system paramerers: mm ¼ 1.2, mk ¼ 1.5, b ¼ 0.5,

R ¼ 0.7, f20 ¼ 0 and z ¼ 0.05; and (b) system paramerers: m ¼ 0.3, mk ¼ 1, mc ¼ 1, b ¼ 0.5, R ¼ 0.6, f20 ¼ 0 and z ¼ 0.05.
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unstable q ¼ 1/1 point. With further decrease in o, two closed circles become quasi-attracting due to
occurrence of chattering impacts [10,16]. The quasi-attracting invariant circles are attracting for the map point
inside the circles, and repelling for the map point on or outside them. The system falls into chaotic motion
immediately via the quasi-attracting invariant circles.

As the forcing frequency o passes through oc2 ¼ 0.6471527 increasingly, a real eigenvalue of Jacobian
matrix D ~f ðo;X �Þ escape the unit circle from the point (�1, 0), and period doubling bifurcation associated with
q ¼ 1/1 motion occurs. However, the period doubling bifurcation is subcritical. Stable q ¼ 1/1 motion and
unstable q ¼ 2/2 motion coexist in the region oA(0.6352363, 0.6471527). As o passes through
oc2 ¼ 0.6471527 increasingly, the q ¼ 1/1 motion become unstable and there exists no q ¼ 2/2 motion.

Another similar example is given by the system with system parameters: m ¼ 0.3, mk ¼ 1, mc ¼ 1, b ¼ 0.5,
f20 ¼ 0, R ¼ 0.6 and z ¼ 0.05. The forcing frequency o and distribution of masses mm are taken as the control
parameters, i.e. v ¼ (mm,o)

T. The eigenvalues of Jacobian matrix D ~f ðv;X �Þ are computed. All eigenvalues of
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D ~f ðv;X �Þ stay inside the unit circle for v ¼ (0.72, 0.5278)T. By gradually decreasing mm and o from the point
v ¼ (0.72, 0.5278)T to change the control parameters v, we obtain the critical value vc ¼ (0.7084388,
0.5275136)T, at which all eigenvalues of Jacobian matrix D ~f ðv;X �Þ are given by

l1;2ðvcÞ ¼ �0:28803001� 0:95762230i; l1;2ðvcÞ


 

 ¼ 1:0000; l3ðvcÞ ¼ �0:99999874;

l4ðvcÞ ¼ �0:1849545; l5;6ðvcÞ ¼ �0:11229740� 0:08878266i:

The complex conjugate pair of eigenvalues l1,2(vc) and the real eigenvalue l3(vc) are very close to the unit
circle. The eigenvalues l1,2(v) and l3(v) have escaped the unit circle as v passes through v ¼ (0.7084387,
Fig. 26. The projected Poincaré sections: (a) transient points as well as the attracting invariant circle associated with q ¼ 1/1 fixed point,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 0.5275, mm ¼ 0.70845; (b) transient points, the non-

attracting invariant circle as well as two attracting invariant circles caused by torus bifurcation, starting from the initial condition near the

fixed point of q ¼ 1/1 motion, o ¼ 0.5274, mm ¼ 0.70845; (c) two attracting invariant circles caused by torus bifurcation, o ¼ 0.5273,

mm ¼ 0.70845; (d) tori doubling, o ¼ 0.52723, mm ¼ 0.70845; (e) chaos, o ¼ 0.52715, mm ¼ 0.70845; (f) chaos, o ¼ 0.527085,

mm ¼ 0.70845; (g) chaos, o ¼ 0.52708, mm ¼ 0.70845; (h) tori doubling associated with q ¼ 10/10 fixed point, o ¼ 0.52706,

mm ¼ 0.70845; and (i) attracting invariant circles associated with q ¼ 10/10 fixed point, o ¼ 0.52705, mm ¼ 0.70845.
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Fig. 27. The projected Poincaré sections: (a) transient points as well as the attracting invariant circle associated with q ¼ 1/1 fixed point,

starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 0.527, mm ¼ 0.715; (b) transient points, the non-attracting

invariant circle as well as two attracting invariant circles caused by torus bifurcation, starting from the initial condition near the fixed point

of q ¼ 1/1 motion, o ¼ 0.5264, mm ¼ 0.715; (c) phase locking, o ¼ 0.52637, mm ¼ 0.715; and (d) chaos, o ¼ 0.5263, mm ¼ 0.715.
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0.5275134)T decreasingly. The eigenvalues l1,2(v) and l3(v) almost escape the unit circle simultaneously, so
vc ¼ (0.7084388, 0.5275136)T is approximately taken as the value of codimension two bifurcation.

The partial bifurcation set near the critical value is plotted in Fig. 24(b). Numerical results are shown for
mm ¼ 0.70845, mm ¼ 0.715 and a series of values of o in Figs. 26 and 27, respectively. The process of torus
bifurcation can be observed clearly from the projected portraits of Poincaré map. The vibro-bouncing system
with mm ¼ 0.70845 is analyzed firstly. The torus bifurcation and transition are shown for mm ¼ 0.70845 in
Fig. 26. As the forcing frequency o passes through the critical value oc1 ¼ 0.527511 decreasingly, a complex
conjugate pair eigenvalues of D ~f ðo;X �Þ escape the unit circle, and supercritical Hopf bifurcation associated
with q ¼ 1/1 motion occurs. The quasi-periodic attractor is shown for o ¼ 0.5275 in Fig. 26(a). With decrease
in o, instability of the closed circle associated with q ¼ 1/1 point occurs, and the torus bifurcation leads to
two attracting invariant circles; see Figs. 26(b) and (c). With further decrease in o, the two invariant circles
become non-attracting and tori doubling are born, which subsequently becomes unstable and chaotic; see
Figs. 26(d)–(g). And then the quasi-periodic attractors associated with q ¼ 10/10 point are generated by
degeneration of chaos, represented by ten tori doubling and ten closed circles in projected Poincaré sections,
respectively; see Figs. 26(h) and (i).

The torus bifurcation and transition are shown for mm ¼ 0.715 in Fig. 27.
The dynamic behavior near the points of codimension two bifurcations, occurring in two examples of the

system shown in Fig. 23, corresponds with the unfolding of a complex case shown in Fig. 4.

7.5. Symmetry of period two points and attracting invariant circles at the corresponding period one point

By analyzing local behavior of the normal form map near the point of codimension two bifurcation, we
know that the period two points Y ð2Þ ¼ ðY ð2Þ1 ;Y

ð2Þ
2 Þ

T are symmetrical about the origin. Moreover only the
positive (x, r) quadrant is shown in Figs. 2–4, since the portraits are symmetric under reflection about r axis.
The attracting invariant circles associated with Y ð2Þ ¼ ðY ð2Þ1 ;Y

ð2Þ
2 Þ

T points are symmetrical about the origin near
the critical value e ¼ (0, 0, 0)T. Because the type of q ¼ 2/2 fixed points changes from node to focus and Hopf
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bifurcation associated with q ¼ 2/2 points occurs, no period doubling cascade emerges under the condiction of
codimension two bifurcation. The q ¼ 2/2 fixed points and closed tori associated with them are symmetrical
about the corresponding q ¼ 1/1 point near the value of codimension two bifurcation. We can observe the
symmetry of q ¼ 2/2 fixed points, about the corresponding q ¼ 1/1 fixed point, as seen in the bifurcation
diagrams (Figs. 8(a1), 14(a1) and 20). The results from simulation also show that the attracting invariant
circles associated with q ¼ 2/2 points are symmetrical about the corresponding q ¼ 1/1 point near the value of
Hopf bifurcation of q ¼ 2/2 points; see bifurcation diagrams (Figs. 8(a1), 14(a1) and 20) and projected
portraits of Poincaré map (Figs. 11(a)–(c), 17(a) and (b), 21(a)–(c)).

We can often observe a phenomenon in numerical analyses. As one of eigenvalues of Jacobian matrix
Df ðo;X �Þ escapes the unit circle of the complex plane from the point (�1, 0) and a complex conjugate pair of
eigenvalues are close to the unit circle but not very close to it, Hopf bifurcation associated with q ¼ 2/2 points
probably occurs. However, in this case the q ¼ 2/2 fixed points and attracting invariant tori associated with
them are generally non-symmetrical about the corresponding q ¼ 1/1 point. This means that the symmetry of
q ¼ 2/2 fixed points and attracting invariant tori occurs only near the value of codimension two bifurcation.
As the system parameters are far away from the critical parameters of codimension two bifurcation, no
symmetry of q ¼ 2/2 fixed points and attracting invariant tori exists. The asymmetrical q ¼ 2/2 fixed points
and attracting invariant tori can be observed in the following example.

Let us continue to consider the system shown in Fig. 1(a). The system, with system parameters mm ¼ 0.8,
f0 ¼ 2.0, d ¼ 0.01, R ¼ 0.8, z1 ¼ z2 ¼ 0.0, o0 ¼ 1.6 and n ¼ 1 is chosen for analysis. A real eigenvalue l1(o) of
Df ðo;X �Þ escapes the unit circle from the point (–1, 0) with o passing through oc ¼ 2.470315 increasingly,
and the remainder of the spectrum of Df ðo;X �Þ are strictly inside the unit circle, so period doubling
bifurcation of q ¼ 1/1 motion occurs. oc ¼ 2.470315 is the value of period doubling bifurcation, at which all
eigenvalues of Df ðo;X �Þ are

l1ðocÞ ¼ �1:000002; l2;3ðocÞ ¼ 0:8189888� 0:117085i; l4ðocÞ ¼ �0:9350552:

The results from simulation, by the bifurcation diagram and projected Poincaré sections, are epitomized in
Figs. 28 and 29. The numerical results show that q ¼ 1/1 motion stabilizes for oA[2.0, 2.470315]. As o passes
though o ¼ 2.470315, instability of q ¼ 1/1 motion occurs, and q ¼ 2/2 motion stabilizes. With changing the
forcing frequency o increasingly, q ¼ 2/2 fixed points change from stable node to stable focus; see Figs. 29(a)
and (b). And then instability of q ¼ 2/2 points results in Hopf bifurcation associated with q ¼ 2/2 fixed points.
The quasi-periodic attractor associated with q ¼ 2/2 points is shown for o ¼ 2.514 and 2.517 in Figs. 29(c)
and (d), respectively, which is represented by two closed circles in the projected Poincaré section. With further
increase in o, the phase locking takes place so that the quasi-periodic motion gets locked into a periodic
attractor of higher (than period two) period (see Fig. 29(e)), which subsequently becomes unstable and
chaotic; see Fig. 29(f). One can observe easily, from Figs. 28 and 29, that the q ¼ 2/2 fixed points and
attracting invariant tori associated with them are non-symmetrical about the corresponding q ¼ 1/1 point.
Fig. 28. Bifurcation diagram.
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Fig. 29. The projected Poincaré sections: (a) transient points as well as q ¼ 2/2 fixed points (node), starting from the initial condition near

the fixed point of q ¼ 1/1 motion, o ¼ 2.495; (b) transient points as well as q ¼ 2/2 fixed points (focus), starting from the initial condition

near the fixed point of q ¼ 1/1 motion, o ¼ 2.51; (c) transient points as well as the attracting invariant circles associated with q ¼ 2/2

points, starting from the initial condition near the fixed point of q ¼ 1/1 motion, o ¼ 2.514; (d) the attracting invariant circles associated

with q ¼ 2/2 points, o ¼ 2.517; (e) phase locking, o ¼ 2.519; and (f) chaos, o ¼ 2.525.
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8. Conclusions

Local codimension two bifurcation, involving a real eigenvalue and a complex conjugate pair escaping the
unit circle simultaneously, is analyzed by using the center manifold theorem technique and normal forms for
maps. Dynamical behavior of the vibro-impact systems, near the point of codimension two bifurcation, is
investigated by qualitative analyses and numerical simulation. The vibro-impact system, under the condition
of codimension two bifurcation, can exhibit more complicated quasi-periodic impact motions than those
which occur in non-resonance, weak resonance [23] and strong resonance cases [24]. Near the point of
codimension two bifurcation there exists not only Hopf bifurcation of q ¼ 1=1 impact motion, but also Hopf
bifurcation of q ¼ 2=2 impact motion. The period doubling bifurcation of q ¼ 1=1 motion is commonly
existent near the point of codimension two bifurcation. However, no period doubling cascade of the motion
emerges due to change of the type of q ¼ 2=2 fixed points and occurrence of Hopf bifurcation of q ¼ 2=2
motion. The types of q ¼ 2=2 points usually change as stable node-stable focus-unstable focus with change
of the control parameters. The q ¼ 2=2 fixed points are symmetrical about the corresponding q ¼ 2=2 point.
The results from simulation show also that the attracting invariant circles associated with q ¼ 2=2 points are
smooth in nature and symmetrical about the corresponding q ¼ 1=1 point near the value of Hopf bifurcation
of q ¼ 2=2 fixed points. As the value of o moves further away from the value of Hopf bifurcation, two
attracting invariant circles expand, and the smoothness and symmetry of the quasi-periodic attractor are
changed by degrees until they are destroyed.

The strict condition of codimension two bifurcation is not easy to encounter in practical application of
engineering. However, there exist the possibilities that actual nonlinear dynamical systems, with two varying
parameters or more, work near the critical value of codimension two bifurcation due to change of parameters.
The impact-forming machinery is a typical example. Besides the forcing frequency, o, the gap varies also with
different thicknesses of the formed workpieces [48]. Another representative example is the inertial vibro-
impact shaker, where the distribution of masses is generally metabolic with casts of different masses, and the
forcing frequency is also important parameter changed [49]. The change of multi-parameter possibly leads to
the results that the vibro-impact systems work near the critical parameters of codimension two bifurcation. It
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is necessary to study the bifurcations caused by change of multi-parameters and dynamical behavior of
nonlinear systems near the points of bifurcations.
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Appendix A

A.1. The center manifold of high dimensional map under the condition of a codimension two bifurcation

Let us consider the map

X 0 ¼ f ðv;X Þ, (A.1)

in which, f :Rn-R
n, XAR

n (nX4), vAR
2. Let the map f (v,X) be of class Ck (kX5), and assume that X �ðvÞ is a

fixed point for the map (A.1) for v in some neighborhood of a critical value v ¼ vc at which the linearized map
Df ðv; X �Þ satisfies the following assumption

H1. Jacobian matrix Df ðv; X �Þ has the eigenvalues l1(vc), l2(vc) and l3(vc) on the unit circle, in which l1(vc) is
a real eigenvalue and l2,3(vc) are a pair of complex conjugate eigenvalues, and l1(vc) ¼ �1, l2ðvcÞ ¼ l̄3ðvcÞ,
9l2,3(vc)9 ¼ 1.

H2. The remainder of the spectrum of Df ðv; X �Þ are strictly inside the unit circle, i.e., 9l2,3(vc)9o1,
i ¼ 4,y, n.

Let ri(v) denote the eigenvector of Df ðv; X �Þ corresponding to the eigenvalue li(v) (i ¼ 1, 2,y, n). If lj(v) is
one of a pair complex conjugate eigenvalues (j6¼1, 2, 3, but j may be 4,y, n�1), the eigenmatrix may be
expressed by P ¼ (r1, Re r2,�Im r2,y, Re rj,�Im rj,y); If lj(v) is a real eigenvalue (j 6¼1, 2, 3, but j may be
4, 5,y, n), then P ¼ (r1, Re r2,�Im r2,y, rj,y). For all v in some neighborhood of vc, the map (A.1) under
the change of variables

X ¼ X � þ P ~Y ; v ¼ vc þ m, (A.2)

becomes

Y 0 ¼ ~F ðm; ~Y Þ, (A.3)

where D ~F ðm; 0Þ has the form

D ~F ðm; 0Þ ¼

l1 0 0 0

0 Re l2 �Im l2 0

0 Im l2 Re l2 0

0 0 0 D1

2
6664

3
7775, (A.4)

in which l1 ¼
~l1ðmÞ ¼ l1ðvc þ mÞ, l2 ¼

~l2ðmÞ ¼ l2ðvc þ mÞ, ~l1ð0Þ ¼ �1, ~l2;3ð0Þ ¼ a� i$. D1 is a real matrix of
degree (n�3)� (n�3) with eigenvalues ~l4ðmÞ; . . . ; ~ln�1ðmÞ, ~lnðmÞ.

Let z1 ¼ ~y1, z2 ¼ ~y2 þ i ~y3, z̄2 ¼ ~y2 � i ~y3, z ¼ ðz1; z2; z̄2Þ
T, Gð1Þ ¼ F 1 � l1z1, Gð2Þ ¼ F 2 þ iF 3 � l2z2, W ¼

ð ~y4; . . . ; ~ynÞ
T, H ¼ ð ~F 4; ~F 5; . . . ; ~F nÞ

T
�D1W and let us show that the map (A.3) may be written in the form

z01 ¼ l1z1 þ Gð1Þðz1; z2; z̄2;W ; mÞ; z02 ¼ l2z2 þ Gð2Þðz1; z2; z̄2;W ; mÞ;

W 0
¼ D1W þHðz1; z2; z̄2;W ;mÞ. ðA:5Þ
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For the map (A.5), there exists a local center manifold [44,46], given by

W̄ ¼W ðz1; z2; z̄2; mÞ, (A.6)

which satifies the condition W ð0; 0; 0; mÞ ¼W 0

z1
ð0; 0; 0; mÞ ¼W 0

z2
ð0; 0; 0; mÞ ¼W 0

z̄2
ð0; 0; 0; mÞ ¼ 0.

On the center manifold the local behavior of the map (A.5) can be reduced, by substituting the formula
(A.6) to the map (A.5), to a three-dimensional map. In order to determine the center manifold W ðz1; z2; z̄2; mÞ,
we have to expand W ðz1; z2; z̄2; mÞ in Tylor series about (0, 0, 0, m) and solve the following equation:

W ðz01; z
0

2; z̄
0

2; mÞ ¼ D1W ðz1; z2; z̄2; mÞ þHðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ. (A.7)

The Tylor series of W ðz1; z2; z̄2; mÞ about (0, 0, 0, m) is expressed by

W ðz1; z2; z̄2; mÞ ¼
XL

iþjþk¼2

W ijkðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þOð z1j j þ z2j jÞ

Lþ1. (A.8)

By substituting the formula (A.8) into Eq (A.7) and solving the equation for Wijk(m), we can obtain

W 200 ¼ ðl
2

1 �D1Þ
�1

H200; W 020 ¼ ðl
2

2 �D1Þ
�1

H020; W 002 ¼ ðl̄
2

2 �D1Þ
�1

H002,

W 110 ¼ ðl1l2 �D1Þ
�1

H110; W 011 ¼ ðl1l̄2 �D1Þ
�1

H011; W 101 ¼ ðl1l̄2 �D1Þ
�1

H101,

W 300 ¼ ðl
3

1 �D1Þ
�1
ðH300 þ 3H1

100W 200 � 3l1G
ð1Þ

200W 200 � 3l1W 110G
ð2Þ

200 � 3l1W 101Ḡ
ð2Þ

200Þ,

W 030 ¼ ðl
3

2 �D1Þ
�1
ðH030 þ 3H1

010W 020 � 3l2G
ð2Þ

020W 020 � 3l2W 011Ḡ
ð2Þ

200 � 3l2W 110G
ð1Þ

020Þ,

W 003 ¼ ðl̄
3

2 �D1Þ
�1
ðH003 þ 3H1

001W 002 � 3l̄2G
ð1Þ

002W 101 � 3l̄2W 011G
ð2Þ

002 � 3l̄2W 002Ḡ
ð2Þ

002Þ,

W 210 ¼ ðl
2

1l2 �D1Þ
�1
ðH210 þ 2H1

100W 110 þH1
010W 200 � 2l1G

ð1Þ

110W 200 � 2l1W 110G
ð2Þ

110 � l2W 110G
ð1Þ

200

� 2W 101l1Ḡ
ð2Þ

101 �W 011l2Ḡ
ð2Þ

200 � l2W 020G
ð2Þ

200Þ,

W 201 ¼ ðl
2

1l̄2 �D1Þ
�1
ðH201 þ 2H1

100W 101 þH1
001W 200 � 2l1G

ð1Þ

101W 200 � l̄2W 002Ḡ
ð2Þ

200 � 2l1W 110G
ð2Þ

101

�W 011l̄2G
ð2Þ

200 � 2W 101l1Ḡ
ð2Þ

110 � l̄2W 101G
ð1Þ

200Þ,

W 021 ¼ ðl
2

2l̄2 �D1Þ
�1
ðH021 þ 2H1

101W 011 þH1
001W 020 � l̄2Ḡ

ð2Þ

002W 002 � 2l2W 020G
ð2Þ

011 � l̄2W 101G
ð1Þ

020

� 2W 011l2Ḡ
ð2Þ

011 �W 011l̄2G
ð2Þ

020 � 2l2W 110G
ð1Þ

011Þ,

W 102 ¼ ðl
2

1l̄
2

2 �D1Þ
�1
ðH102 þ 2H1

001W 101 þH1
100W 002 � l1G

ð1Þ

002W 200 � 2l̄2W 002Ḡ
ð2Þ

110 � l1W 110G
ð2Þ

002

� 2W 011l̄2G
ð2Þ

101 �W 101l1Ḡ
ð2Þ

020 � 2l̄2W 101G
ð1Þ

101Þ,

W 120 ¼ ðl1l
2

2 �D1Þ
�1
ðH120 þ 2H1

010W 110 þH1
100W 020 � l1G

ð1Þ

020W 200 � 2l2G
ð2Þ

110W 020 � l1W 110G
ð2Þ

020

� 2W 110l2G
ð1Þ

110 �W 101l1Ḡ
ð2Þ

002 � 2l2W 011Ḡ
ð2Þ

101Þ,

W 111 ¼ ðl1l2l̄2 �D1Þ
�1
ðH111 þ 2H1

010W 011 � l1G
ð1Þ

011W 200 � l2G
ð2Þ

101W 020 � l̄2Ḡ
ð2Þ

101W 002 � l1W 110G
ð2Þ

011

�W 110l2G
ð1Þ

101 � l2Ḡ
ð2Þ

110W 011 � l̄2G
ð2Þ

110W 011 �W 101l1Ḡ
ð2Þ

011 � l̄2W 101G
ð1Þ

110Þ, ðA:9Þ

where Wijk, GðlÞijk and Hijk denote Wijk(m), GðlÞijkðmÞ and Hijk(m), respectively, and GðlÞijkðmÞ and Hijk(m) are given by

GðlÞijk ¼
qrGðlÞ

qzi
1qzj

2qz̄k
2






ð0;0;0;0;mÞ

; Hijk ¼
qrH

qzi
1qzj

2qz̄k
2






ð0;0;0;0;mÞ

; r ¼ i þ j þ k ¼ 2; 3 (A.10)

H1
100 ¼

q
qz1

qH

qW 1

; . . . ;
qH

qW n�3

� 	




ð0;0;0;0;mÞ

; H1
010 ¼

q
qz2

qH

qW 1

; . . . ;
qH

qW n�3

� 	




ð0;0;0;0;mÞ

,

H1
001 ¼

q
qz̄2

qH

qW 1

; . . . ;
qH

qW n�3

� 	




ð0;0;0;0;mÞ

. ðA:11Þ
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Inserting the formulae (A.9) into the center manifold (A.8), we have

W z1; z2; z̄2; mð Þ ¼
X3

iþjþk¼2

W ijkðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þ O z1j j þ z2j jð Þ

4
� �

. (A.12)

Let

z01 ¼ l1z1 þ gð1Þðz1; z2; z̄2; mÞ; z02 ¼ l2z2 þ gð2Þðz1; z2; z̄2; mÞ, (A.13)

where

gðlÞðz1; z2; z̄2; mÞ ¼ GðlÞðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ. (A.14)

The expanded form of gðlÞðz1; z2; z̄2; mÞ is given by

gðlÞðz1; z2; z̄2; mÞ ¼
XL

iþjþk¼2

gðlÞijkðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þ O z1j j þ z2j jð Þ

Lþ1
� �

; ðl ¼ 1; 2Þ. (A.15)

Introducing the formulae (A.12) and (A.15) to the map (A.13), we obtain

gðlÞ110 ¼ GðlÞ110; gðlÞ011 ¼ GðlÞ011; gðlÞ101 ¼ GðlÞ101; gðlÞ200 ¼ GðlÞ200; gðlÞ020 ¼ GðlÞ020; gðlÞ002 ¼ GðlÞ002,

gðlÞ300 ¼ GðlÞ300 þ 3Gðl;1Þ100 W 200; gðlÞ030 ¼ GðlÞ030 þ 3Gðl;1Þ010 W 020; gðlÞ003 ¼ GðlÞ003 þ 3Gðl;1Þ001 W 002,

gðlÞ210 ¼ GðlÞ210 þ 2Gðl;1Þ100 W 110 þ Gðl;1Þ011 W 200; gðlÞ120 ¼ GðlÞ120 þ 2Gðl;1Þ010 W 110 þ Gðl;1Þ100 W 020,

gðlÞ201 ¼ GðlÞ201 þ 2Gðl;1Þ100 W 101 þ Gðl;1Þ001 W 200; gðlÞ102 ¼ GðlÞ102 þ 2Gðl;1Þ001 W 101 þ Gðl;1Þ100 W 002,

gðlÞ021 ¼ GðlÞ021 þ 2Gðl;1Þ010 W 011 þ Gðl;1Þ001 W 020; gðlÞ012 ¼ GðlÞ012 þ 2Gðl;1Þ001 W 011 þ Gðl;1Þ010 W 002,

gðlÞ111 ¼ GðlÞ111 þ 2Gðl;1Þ100 W 011 þ Gðl;1Þ010 W 101 þ Gðl;1Þ001 W 110,

in which,

l ¼ 1; 2; Gðl;1Þ100 ¼
q
qz1

qGðlÞ

qW 1

; . . . ;
qGðlÞ

qW n�3

� 	




ð0;0;0;0;mÞ

; Gðl;1Þ010 ¼
q
qz2

qGðlÞ

qW 1

; . . . ;
qGðlÞ

qW n�3

� 	




ð0;0;0;0;mÞ

,

Gðl;1Þ001 ¼
q
qz̄2

qG

qW 1

; . . . ;
qG

qW n�3

� 	




ð0;0;0;0;mÞ

.

The map (A.1) has been reduced to a three-dimensional one by using a center manifold theorem technique.
The three-dimensional map, in the complex form, is expressed by

z01 ¼
~l1ðmÞz1 þ

X3
iþjþk¼2

gð1Þijk ðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þO z1j j þ z2j jð Þ

4,

z02 ¼
~l2ðmÞz2 þ

X3
iþjþk¼2

gð2Þijk ðmÞ
zi
1z

j
2z̄

k
2

i!j!k!
þO z1j j þ z2j jð Þ

4. ðA:16Þ

A.2. The normal form map

The three-dimensional map with two parameters is expressed briefly by

z0 ¼ F ðm; zÞ; F ðm; 0Þ ¼ 0, (A.17)

where m ¼ ðm1;m2Þ
T, z ¼ z1; z2; z̄2ð Þ

T, z1 ¼ y1; z2 ¼ y2 þ iy3, z̄2 ¼ y2 � iy3.
Under the change of variables with parameters m

z ¼ Gðm;ZÞ ¼ Z þ Fðm;ZÞ; Fðm; 0Þ ¼ 0; ja1; 2; 3, (A.18)

the three-dimensional map becomes the normal form

Z0 ¼ A0Z þNðm;ZÞ; Nðm; 0Þ ¼ 0, (A.19)

in which A0 ¼ Diag½�1; ~l2ð0Þ; ~̄l2ð0Þ�:
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We can expand F ðm; zÞ, Fðm;ZÞ and Nðm;ZÞ as Taylor series in the variables m, z, and Z, respectively, which
are given by

F ðm; zÞ ¼
X

pþqX1

F pq mðpÞ; zðqÞ
� �

; Fðm;ZÞ ¼
X

pþqX1

Fpq mðpÞ;ZðqÞ
� �

; Nðm;ZÞ ¼
X

pþqX1

Npq mðpÞ;ZðqÞ
� �

, (A.20)

where

F pq ¼
1

p!q!
�
qpþqF

qmpqzq
ð0; 0Þ; Fpq ¼

1

p!q!
�
qpþqF
qmpqZq ð0; 0Þ; Npq ¼

1

p!q!
�
qpþqN

qmpqZq ð0; 0Þ.

By substituting the formula (A.20) into the map (A.18), we can obtain the equations

A0F11 m;Z½ � � F11 m;A0Z½ � ¼ F 11 m;Z½ � �N11 m;Z½ �, (A.21)

A0F02 Zð2Þ
� �

� F02 A0Zð Þ
ð2Þ

� �
¼ F 02 Zð2Þ

� �
�N02 Zð2Þ

� �
, (A.22)

A0F03 Zð3Þ
� �

� F03 ðA0ZÞ
ð3Þ

� �
¼ F 03 Zð3Þ

� �
þ 2F02 A0Z;F 02 Zð2Þ

� �� �
�N03 Zð2Þ

� �
� 2N02 Z;F02 Zð2Þ

� �� �
, (A.23)

A0Fpq mðpÞ;ZðqÞ
� �

� Fpq mðpÞ; A0Zð Þ
ðqÞ

� �
¼ Rpq mðpÞ;ZðqÞ

� �
�Npq mðpÞ;ZðqÞ

� �
; . . . (A.24)

The general form of Eqs. (A.21)–(A.24) is given by

BqFpq ¼ Rpq �Npq, (A.25)

where

BqFpq mðpÞ;ZðqÞ
� �

¼ A0Fpq mðpÞ;ZðqÞ
� �

� Fpq mðpÞ; A0Zð Þ
ðqÞ

� �
. (A.26)

Let Hq represent the space of q order homogeneous polynomials, i.e. the elements of the space Hq consist of
three-dimensional vectors, and component vector of every vector is a q order homogeneous expression
associated with Z1, Z2 and Z̄2. Let Bq be a linear transformation in Hq. The space Hq may be expressed as the
sum space of value subspace and complemented subspace. Rpq �Npq is reduced to value subspace of Bq by
choosing the simpler form of Npq, and Fpq is determined by using Eq. (A.25). Wherefore we can choose the
basis for the space H1

e1 ¼ ðZ1; 0; 0Þ
T; e2 ¼ ðZ2; 0; 0Þ

T; e3 ¼ ðZ̄2; 0; 0Þ
T; . . . e9 ¼ ð0; 0; Z̄2Þ

T. (A.27)

The images of ei, on the matrix B1, are

B1e1 ¼ 0; B1e2 ¼ ð�1� lÞe2; B1e3 ¼ ð�1� l̄Þ; B1e4 ¼ ðlþ 1Þe4; B1e5 ¼ 0,

B1e6 ¼ ðl� l̄Þe6; B1e7 ¼ ðl̄þ 1Þe7; B1e8 ¼ ðl̄� lÞe8; B1e9 ¼ 0,

where l ¼ l2ð0Þ ¼ aþ i$.
On the basis of (A.27), the matrix B̄1 may be expressed as

B̄1 ¼

0 0 0 0 0 0 0 0 0

0 �1� l 0 0 0 0 0 0 0

0 0 �1� l̄ 0 0 0 0 0 0

0 0 0 lþ 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 l� l̄ 0 0 0

0 0 0 0 0 0 l̄þ 1 0 0

0 0 0 0 0 0 0 l̄� l 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

.

Let the coordinates of F11, N11 and F11 on the basis of e1; e2; e3; . . . ; e9f g for H1 be F̄11 ¼ fj̄1; j̄2; j̄3; . . . ; j̄9g
T,

N̄11 ¼ fn̄1; n̄2; n̄3; . . . ; n̄9g
T, F̄ 11 ¼ ff̄ 1; f̄ 2; f̄ 3; . . . ; f̄ 9g

T.
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The formula (A.21) can be represented by

B̄1F̄11 ¼ F̄ 11 � N̄11. (A.28)

The solution for Eq. (A.28) is given by

F̄11 ¼ C1;
f̄ 2 � n̄2

�1� l
;
f̄ 3 � n̄3

�1� l̄
;
f̄ 4 � n̄4

lþ 1
;C2;

f̄ 6 � n̄6

l� l̄
;
f̄ 7 � n̄7

l̄þ 1
;
f̄ 8 � n̄8

l̄� l
;C3

 �
,

N̄11 ¼ ff̄ 1; 0; 0; 0; f̄ 5; 0; 0; 0; f̄ 9g
T, (A.29)

in which C1, C2 and C3 are arbitrary constants.
In the space H2, we can choose the basis

e1 ¼ ðZ
2
1; 0; 0Þ

T; e2 ¼ ðZ1Z2; 0; 0Þ
T; e3 ¼ ðZ1Z̄2; 0; 0Þ

T; e4 ¼ ðZ
2
2; 0; 0Þ

T,

e5 ¼ ðZ2Z̄2; 0; 0Þ
T; e6 ¼ ðZ̄

2

2; 0; 0Þ
T; . . . ; e18 ¼ ð0; 0; Z̄

2

2Þ
T,

on which, the matrix B̄2 is an invertible one, we can solve for the matrix form of the formula (A.22) by taking
N02[Z

(2)] ¼ 0, which is given by

F̄02 ¼ B̄
�1

2 F̄ 02,

in which F̄02 and F̄ 02 are the coordinate of F[Z(2)] and F02[Z
(2)] on the basis of {ei, i ¼ 1, 2,y, 18} for H2,

respectively.
The basis of H3 is taken by using the same method above-mentioned, and the basis for H3 may be expressed

by

e1 ¼ ðZ
3
1; 0; 0Þ

T; e2 ¼ ðZ
2
1Z2; 0; 0Þ

T; e3 ¼ ðZ
2
1Z̄2; 0; 0Þ

T; e4 ¼ ðZ1Z
2
2; 0; 0Þ

T,

e5 ¼ ðZ1Z̄
2

2; 0; 0Þ
T; e6 ¼ ðZ1Z2Z̄2; 0; 0Þ

T; e7 ¼ ðZ
3
2; 0; 0Þ

T; e8 ¼ ðZ
2
2Z̄2; 0; 0Þ

T,

e9 ¼ ðZ2Z̄
2

2; 0; 0Þ
T; e10 ¼ ðZ̄

3

2; 0; 0Þ
T; . . . ; e30 ¼ ð0; 0; Z̄

3

2Þ
T.

The formula (A.23) may be expressed by

B̄3F̄03 ¼ F̄ 03 � N̄03. (A.30)

The matrix B̄3 is a non-invertible one. F̄ 03, F̄03 and N̄03 are the coordinates of F03[Z
(3)]+2F03[A0Z, F02[Z

(2)]],
F03[Z

(3)] and N03[Z
(3)] on the basis for H3, respectively. F̄ 03 ¼ ðf 1; f 2; . . . ; f 30Þ

T, F̄03 ¼ ðj1;j2; . . . ;j30Þ
T,

N̄03 ¼ ðn1; n2; . . . ; n30Þ
T.

The solution for Eq. (A.30) is

F̄03 ¼ C1;
f 2 � n2

�1� l
;
f 3 � n3

�1� l̄
;

f 4 � n4

�1þ l2
;

f 5 � n5

�1þ l̄
2
;C2;

f 7 � n7

�1� l3
;
f 8 � n8

�1� l
; � � �

f 30 � n30

l̄� l̄
3

 �
, (A.31)

N̄03 ¼ ðf 1; 0; . . . ; 0; f 6; 0; . . . 0; f 12; 0; . . . 0; f 18; 0; . . . 0; f 23; 0; . . . ; 0; f 29; 0Þ, (A.32)

in which, the symbol ‘‘y’’ denotes the term with zero value.

Let e1 ¼ f̄ 1, ~e2 ¼ f̄ 5 and ~e3 ¼ f̄ 9 which are associated with the formula (A.29), a ¼ f 1, b ¼ f 6, ~c ¼ f 12,
~d ¼ f 18, ~e ¼ f 23 and

~f ¼ f 29 which are associated with the formula (A.32), and let us show that the simplest
normal map FðZ; ~eÞ, in the complex form, is given by

Z01 ¼ � Z1 þ e1Z1 þ aZ3
1 þ bZ1 Z2j j

2
þO Z1j j þ Z2j jð Þ

5
� �

,

Z02 ¼ l2ð0ÞZ2 þ ~e2Z2 þ ~cZ2
1Z2 þ

~dZ2 Z2j j
2
þO Z1j j þ Z2j jð Þ

5
� �

,

Z̄02 ¼ l̄2ð0ÞZ̄2 þ ~e3Z̄2 þ ~eZ2
1Z̄2 þ

~f Z̄2 Z2j j
2
þO Z1j j þ Z2j jð Þ

5
� �

, ðA:33Þ

where Z ¼ ðZ1;Z2; Z̄2Þ
T, e ¼ ðe1; ~e2; ~e3Þ

T, ~ei ¼ ~eiðmÞ, ~eið0Þ ¼ 0, i ¼ 1, 2, 3.
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The normal form map F(Y; e), in the real form, is given by

y01 ¼ � y1 þ e1y1 þ ay3
1 þ by1ðy

2
2 þ y2

3Þ þ h:o:t;

y02 ¼ ðaþ e2Þy2 � ð$þ e3Þy3 þ ðcy2 � ey3Þy
2
1 þ ðdy2 � fy3Þðy

2
2 þ y2

3Þ þ h:o:t;

y03 ¼ ð$þ e3Þy2 þ ðaþ e2Þy3 þ ðcy3 þ ey2Þy
2
1 þ ðdy3 þ fy2Þðy

2
2 þ y2

3Þ þ h:o:t; ðA:34Þ

where Y ¼ (y1, y2, y3)
T, e ¼ (e1, e2, e3)

T, ei ¼ ei(m), ei(0) ¼ 0, i ¼ 1, 2, 3.
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